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ABSTRACT 
The commitment ability of governments is neither infinite nor zero but intermediate. In this paper, 
we determine the commitment ability that a government needs to implement a unique equilibrium 
outcome and rule out undesired self-fulfilling expectations. We first show that, in a large class of 
static macroeconomic games, the government can implement any time-consistent equilibrium with 
any low level of commitment ability. We then show that this result may not be robust to imperfect 
information, fixed costs or repeated interactions. We finally derive implications for models of 
bailouts, inflation bias, and capital taxation. 
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NON-TECHNICAL SUMMARY 

Multiple equilibria plague many macroeconomic situations involving monetary policy (monetary vs 
non-monetary equilibria, price level determination), financial regulation (bailouts of banks that took 
excessive risks), or fiscal policy (capital taxation). This paper suggests a new approach for 
policymakers to avoid multiplicity without requiring implausibly large commitment ability. 

The literature on bailouts of banks pointed out that multiplicity arises because governments cannot 
fully tie their hands in advance. The commitment not to bail out would avoid sub-optimal equilibria 
in which banks take too much risk. But keeping promises is costly and when risk materializes, the 
government may prefer to bail out banks to avoid costly financial crises. Unfortunately, such a 
preference triggers the existence of a bad equilibrium in which banks take excessive risks forcing a 
government’s bailout. In response, this literature argues that governments have no other means than 
to use tools such as financial regulation to solve equilibrium multiplicity. 

Monetary economics took another route. In this literature, equilibrium multiplicity is perceived as 
resulting from the commitment to bad rules and the literature has been searching for the “good” 
rule. The objective of studying interest rate peg, the Taylor principle, the sophisticated policies, or 
the Fiscal Theory of the Price Level is to find a rule that, when the government commits to it, rules 
out equilibrium multiplicity and pins down a unique allocation. 

To recap: while the bailout literature supposes no commitment technology, and hence no role for 
rules, monetary economics takes as granted the capacity of public authorities to stick to rules. 
In this paper, we try to reconcile the two approaches:  (i) a government cannot fully tie its hands in 
advance to follow rules (ii) deviating from a pre-announced rule (or any type of commitments) may 
still be costly. To this aim, we introduce imperfect commitment to rules, we explicitly deal with the 
potential incentives to stick or deviate from rules and we investigate implications on the design of 
rules. 

More precisely, the government announces a rule before the private sector plays. Then, the 
government incurs a cost in case of ex-post deviation from the rule. This cost measures its 
commitment ability. When zero, it is the discretionary case. When infinite, it is the full commitment 
case. 

In a large class of static games, we show that a very small commitment ability is sufficient. Why? 
Because in general, a small policy change is sufficient to deter a private sector action. So the 
multiplicity issue is easy to overcome.  

Let us take a concrete example. In the capital taxation problem, the government may decide to tax 
savings ex post, which can discourage investment ex ante. As a result, there may be three Nash 
equilibria in the absence of commitment ability. In the figure below, the three Nash equilibria 
correspond to the three intersections between the competitive outcomes curve in red – along which 
the aggregate capital is optimal given capital taxation – and the ex-post optimal capital taxation in 
blue. To rule out the two suboptimal outcomes with too low capital accumulation (the first two 
Nash equilibria), the government can commit to lower than expected tax (black diamonds). These 
commitments do not require large commitment ability. 

To come back to the initial motivation about banks’ bailout, our result suggests that ruling out 
equilibrium multiplicity only requires a low commitment ability. In this example, the government 
(or the central bank) should commit to a partial bailout such that it is always optimal for banks to 
take less risk than the aggregate. In the end, the only remaining equilibrium is the one without banks’ 
bailout and optimal level of risk-taking. 
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But sometimes implementation requires more commitment ability: when bold public actions are 
needed to deter some private sector actions - e.g. when private agents are not fully rational or the 
actions set is discrete - or when information is imperfect. More commitment ability is also needed 
when the "game is repeated" and the private sector can react to past policy decisions. Then, 
government’s patience may be an obstacle for solving equilibrium multiplicity and more 
commitment ability does not necessarily increases the social welfare. 
 

Implémentation cohérente dans le temps 
dans les jeux macroéconomiques  

RÉSUMÉ 

La capacité d'engagement des gouvernements est limitée. Dans cet article, nous déterminons la 
capacité d'engagement dont un gouvernement a besoin pour assurer l’existence d’un équilibre 
unique et éviter les prophéties autoréalisatrices indésirables. Nous montrons d'abord que, dans une 
grande classe de jeux macroéconomiques statiques, le gouvernement peut implémenter un équilibre 
cohérent dans le temps quelle que soit sa capacité d’engagement. Nous montrons ensuite que ce 
résultat peut ne pas être robuste à l'information imparfaite, aux coûts fixes ou aux interactions 
répétées. Enfin, nous en déduisons les implications pour les modèles de renflouement, de biais 
inflationniste et de taxation du capital. 

Mots-clés : implémentation, engagement limité, règles 
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1 Introduction

In many macroeconomic games, the private sector acts anticipating future govern-

ment’s policy. Such an order of actions may lead to self-fulfilling expectations and multi-

ple equilibria depending on the government’s future policy response. As it is well known,

in such situations, the government can commit to a rule that describes its future response

to private actions to rule out undesired self-fulfilling expectations. This is, for example,

one possible rationale for the “no bailout clause” in the EU Treaty (Article 125). The fear

is that private bailout expectations fuel excessive risk taking, making bailouts ex post

necessary. In contrast, the commitment not to bail out is supposed to steer agents to

play the “good” equilibrium without socially costly bailouts and rules out “bad” equilibria

with excessive risk taking.

However, governments are not fully committed to rules. Sometimes, depending on

private actions, sticking to the rule is too costly for governments. Even if enshrined in

a Treaty, the “no bailout clause” was, for instance, not sufficient to completely rule out

bailouts in the euro area (see, among others, Gourinchas et al., 2020). In the extreme

case of full discretion, governments may be tempted to respond to the private sector

by confirming private sector’s expectations, regardless of their past commitments. The

resulting mutual feedback between private actions and the ex-post policy response may

then lead to multiple equilibria.1

Still, rules may allow to do more than discretion. From simple speeches to more formal

commitments such as contracts, laws, constitutions, treaties or the delegations to inde-

pendent authorities, commitments have in common to make future deviations costly, e.g.,

from the simple embarrassment a policymaker may feel for breaking past promises2 or the

political costs of changing or breaching past legislations. But, to what extent the result-

ing limited commitment ability is sufficient to steer the private sector’s expectations on

a unique equilibrium? Alternatively, are multiple equilibria the unintended consequence

of any limits to governments’ commitment ability? If not, how rules should be designed

to credibly exclude undesired self-fulfilling expectations? What would be, for example, a

credible no-bailout clause?

To answer these questions, we consider a macroeconomic game between a large player—

a government—and a large set of small agents—the private sector—that allows us to nest

together the full spectrum of commitment abilities between full discretion and full commit-

ment. We determine the conditions under which a government with a finite commitment

ability can rule out equilibrium multiplicity. When it exists, we find the lowest commit-

1The literature review lists papers in different literatures obtaining such equilibrium multiplicity.
2As Woodford (2012) notes about the commitment to forward guidance announcements, “In practice,

the most logical way to make such commitment achievable and credible is by publicly stating the com-

mitment, in a way that is sufficiently unambiguous to make it embarrassing for policymakers to simply

ignore the existence of the commitment when making decisions at a later time.”
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ment ability that the government needs to implement a unique equilibrium outcome—a

situation that we refer to as (time-consistent) implementation. We describe the rules

that can implement a unique equilibrium in a credible way, whenever possible. Finally,

we derive implications for models of bailouts, inflation bias, and capital taxation.

More precisely, we add to a generic macroeconomic game an ex-ante stage in which

the government first commits to a reaction function that specifies policy responses as

a function of every possible private sector’s aggregate action, following Schelling (1960)

and, more recently, Bassetto (2005). Then, the private sector is competitive—i.e., each

private agent optimizes given the expectation of what other agents do and the govern-

ment’s future response. Finally, the government optimally selects its policy response. The

government’s payoff depends on the aggregate private action and on the policy response.

The government also incurs a cost if the policy response deviates from the one that would

follow the application of the reaction function. This cost measures the extent to which

the government is bound by its commitments, and we will refer to this cost as the gov-

ernment’s commitment ability. When this cost is zero, the government always chooses

its ex-post best response, regardless of its reaction function—this is the case of full dis-

cretion. In the other polar case, when this cost is infinite, the government never deviates

from its reaction function—which corresponds to the situation of full commitment.3

Our main results are as follows. First, in many static games under rational expecta-

tions, we show that the government can implement its best time-consistent outcome with

an arbitrarily small commitment ability. Yet, in this case, limited commitment ability has

a strong impact on the design of credible rules: for example, a government can rule out

bailout expectations by committing to a partial bailout close to, but below, the ex-post

optimal bailout. Second, this general result is, however, not robust to the introduction of

imperfect information, fixed costs, or repeated interactions. In these cases, a government

with a low level of commitment ability fails to implement a unique equilibrium outcome

in a credible way because the government has strong incentives to ex post deviate from

the necessary policies to rule out equilibrium multiplicity.

Static game. We first identify that, in static macroeconomic games, the critical param-

eter for implementation is what we dub the cost of controllability (Section 2). Consider

a private-sector action that the government wants to avoid. To rule it out, the govern-

ment should pick a policy response that deters private agents from individually playing

this action. There may exist many such responses, which may entail different costs for

the government relative to its ex-post best response. The cost of controllability is the

maximum over all undesired private actions of the minimal cost of deterrence. The gov-

ernment implements a unique equilibrium outcome when its commitment ability exceeds

this cost of controllability. Under this condition, the government can credibly commit to

3We provide potential interpretations of this cost in Section 2.4.
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a reaction function from which it will not deviate ex post and that prevents any undesired

outcome to form as an equilibrium. Finally, we show that a larger commitment ability

always improves the best equilibrium outcome in static settings.

To our surprise, the cost of controllability boils down to zero in the static versions

of the banks bailout from Farhi and Tirole (2012), the capital taxation problem and the

inflation bias model. This implies that an arbitrarily small commitment ability is suffi-

cient to implement a unique equilibrium. The main reason for this result is that, in these

static models, private agents’ marginal utilities are continuous functions of government

responses, and the government can, thus, deter any undesired private actions by commit-

ting to a policy response arbitrarily close to its ex-post best response. However, we show

that, even with a zero cost of controllability, commitment ability still constrains the set

of reaction functions that the government can use to obtain a unique equilibrium—and a

larger commitment ability enlarges this set.

An application of these results in the banks’ bailout example is that the central bank

can rule out bailout expectations with an arbitrarily low level of commitment ability.

To this end, the central bank can commit to off-equilibrium partial bailouts that are

only slightly less generous than the bailout expected by the private sector. These off-

equilibrium partial bailouts are sufficient to make suboptimal any private actions antic-

ipating a bailout. Thus, committing never to bail out is not necessary—on top of being

time-inconsistent for low commitment abilities. In the capital taxation example, ineffi-

cient equilibria under discretion, where capital is insufficiently accumulated and taxed

at high rates, can be ruled out by off-equilibrium low-cost commitments, whereby the

government commits to tax capital at a smaller rate compared to expectations.

We then explore limits to this strong implementation result and show in which situa-

tions higher commitment ability is needed to ensure implementation.

Limits in static settings. We first showcase potential limits to our implementation result

in static settings (Section 3) by introducing either imperfect information or fixed costs.

First, we assume that the government can only observe private actions with some

noise. We show that this noise prevents the government from using discontinuous policy

response to implement a unique equilibrium. In the capital taxation example, because

of this constraint, the government needs a sufficient commitment ability to implement a

unique equilibrium even for arbitrarily small noises. But, imperfect information does not

always overturn our benchmark result on implementation, which holds, for example, in

the bailout example whatever the level of noise.

Second, we introduce two additional frictions that lead to a positive cost of controlla-

bility: a fixed cost in private agents’ maximization problem and a discrete set of actions

on the government’s side. In both cases, the more expensive it is for private agents to

pay the fixed cost or the bolder the government’s actions is constrained to be because
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of discrete actions, the more commitment ability the government needs to implement a

unique outcome.

Repeated game. We then show how our benchmark implementation result in static set-

tings changes in repeated games (Section 4). In repeated setting, due to history-dependent

strategies, the private sector can react to past policy decisions, giving incentives to the

government to stick to its commitments. This is why the resulting reputation forces4

are often considered in the literature as an endogenous substitute for commitment abil-

ity, but they are also known to produce multiple equilibria, including in macroeconomic

settings (see the initial contribution by Barro and Gordon, 1983b). To study how rep-

utation forces change the cost of controllability, we extend macroeconomic games (see

Chari and Kehoe, 1990; Stokey, 1991; Ljungqvist and Sargent, 2018, among others) to

include the commitment to a reaction function by the government at each stage game. In

this repeated setting, deviating from the reaction function leads to a welfare cost –either

contemporaneous or future– for the government that measures its commitment ability, as

in the static setting.

We show that, compared with the static setting, only a larger commitment ability

ensures the implementation of a unique equilibrium outcome. The higher cost of control-

lability results from reputation forces that make government’s future payoffs dependent

on its response: due to history-dependent private reactions, the private sector can shift to

an inferior continuation equilibrium when the government sticks to its commitment and,

in contrast, to a better continuation equilibrium when the government deviates. Such

history-dependent reactions lead to reputation forces for the government not to keep its

commitment and to deviate from its reaction function. To get a unique equilibrium,

the commitment ability must be sufficiently large to overcome these reputation forces in

addition to the incentives that we identified in the static setting. Finally, as reputation

forces have an influence through government’s future payoffs, more-patient governments

need more commitment ability to obtain a unique outcome.

In fact, reputation forces are of no help to obtain a unique outcome as reputation forces

disappear when the equilibrium outcome is unique. These forces provide incentives to the

government by promising inferior future equilibrium outcomes in case of deviations. But

inferior outcomes simply do not exist when there is only one equilibrium outcome. Such a

result implies that there is potentially a tension between obtaining a unique equilibrium

outcome and the existence of reputation forces, which may be helpful to sustain better

outcomes.

4As in Ljungqvist and Sargent (2018) reputation forces refer to the incentives stemming from repeated

interactions between a government and a continuum of atomistic private agents. In such macroeconomic

games, individuals are not strategic but atomistic. Still, they may form history-dependent expectations

that allow for trigger “strategies.” In contrast with “reputation effects” in game theory, we do not assume

any form of asymmetric information.
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Perhaps paradoxically, we also obtain that greater commitment ability is not always

beneficial. Reputation forces are endogenous: they depend on future equilibrium out-

comes, which also depend on the government’s commitment ability. To further investigate

the set of equilibria as a function of the commitment ability, we construct a fixed-point

algorithm to compute the set of equilibrium payoffs for a given commitment ability. We

apply this algorithm to the Barro-Gordon model, which features equilibrium multiplicity

in repeated settings.5 We obtain a “non-monotonic” relationship between commitment

ability and the set of equilibrium outcomes. When the commitment ability is low, a

marginal increase in this ability expands the set of equilibrium outcomes: the best equi-

librium outcome becomes even better and the worst becomes worse. There exists a point

at which the commitment ability becomes sufficiently large to obtain a unique equilib-

rium: at this point, a further increase in the commitment ability leads the equilibrium

set to shrink and the payoff for the government in the best equilibrium to decrease.6

Related literature. First, our paper is connected to the literature on the time-inconsistency

of government policies, starting with Kydland and Prescott (1977) and Barro and Gor-

don (1983a). More recently, in a setting that is very close to ours, Dovis and Kirpalani

(forthcoming) analyze the asymmetric information problem in which policymakers can

either fully commit to rules or act under discretion. In contrast with their study, ours

does not consider asymmetric information, and we focus on the ability of the government

to implement a unique equilibrium outcome.

Within this literature, our paper is closer to the papers that, after Barro and Gordon

(1983b), show that government’s time-inconsistent policies lead to equilibrium multiplic-

ity. Such a multiplicity of equilibria was obtained in multiple strands of the literature, in

either static or dynamic settings.

In the literature on bailouts, the complementarity between private actions and bailout

decisions is well known to produce multiple equilibria (see Schneider and Tornell, 2004).

Farhi and Tirole (2012) build a static model in which the inability to commit not to

bail out leads to additional inferior equilibria.7 This is a finding that is shared by Keister

(2016) in a setting close to Ennis and Keister (2009) with the difference that some bailout

is desirable even in the best equilibrium. In this literature, our paper is closely related

to Philippon and Wang (2021), who also investigate “how much” commitment ability

is needed to avoid bailout expectations, but in a setting in which policy can be made

5In the static version of the inflation bias model, the equilibrium is unique even under discretion, so

commitment ability is useless for implementing a unique outcome.
6More commitment ability is, then, not always desirable, echoing the literature on commitment vs.

flexibility (see Amador et al., 2006, among others).
7Notice that Farhi and Tirole (2012) emphasize that potential credibility losses may lead to a fixed

cost for bailouts. However, they do not investigate the implications of such credibility losses for the

required “amount” of commitment ability that would rule out equilibrium multiplicity.
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contingent on individual actions. Our finding that, at least in some models, the cost of

controllability is small so that the coordination problem is easily solved, may be taken as

a motive to focus on the effects of time-inconsistency on the best equilibrium, as in Chari

and Kehoe (2016). However, as we emphasize, this result is not robust to considering

deviations from rationality or, simply, reputation forces, as in repeated settings, where,

absent a large commitment ability, multiple equilibria may emerge.

In monetary economics, following Barro and Gordon (1983b), a literature has explored

the conditions for the existence of multiple equilibria due to the central bank’s time-

inconsistency—or “expectation traps” as dubbed by Chari et al. (1998), who show how

trigger strategies may lead to multiple equilibria, in a setting endogenizing both the public

and the private sectors’ behaviors. Time-inconsistency also produces multiple equilibria

in static settings (see Albanesi et al., 2003; King and Wolman, 2004; Armenter, 2008).

With respect to this literature, our paper shows that such a multiplicity is a robust

feature only when adding additional ingredients such as reputation forces or bounds to

rationality, as, in static contexts, arbitrarily small commitment abilities are sufficient to

rule out multiplicity. Finally, while Chari et al. (1998) show in a dynamic setting that

the full commitment to next-period policies are sufficient to rule out multiple equilibria,

our paper suggests that such a full commitment may have a potentially large welfare cost

that the government may not prefer to afford.

In monetary economics, the literature on monetary rules is also confronted to the

presence of multiple equilibria. Here, the government or the central bank is able to

commit to rules but, depending on its features, the rule itself may not be sufficient to

prevent multiple equilibria to form (see Sargent and Wallace, 1975; Taylor, 1999; Clarida

et al., 2000; Loisel, 2009; Atkeson et al., 2010; Hall and Reis, 2016, among others). Our

paper is in the tradition of this literature, which emphasized that rules should be state-

contingent or, even, sophisticated—i.e., history dependent. This literature has already

highlighted constraints on off-equilibrium policy actions—they should be at least feasible

as emphasized by Bassetto (2005)—or, they allow for a continuation of an equilibrium

as in Atkeson et al. (2010), where the off-equilibrium central bank action is to keep the

quantity of money constant forever. Historically, a key motive for introducing rules was

to solve time-consistency issues as emphasized by Kydland and Prescott (1977). Such a

motive has also led to investigate principal-agent approaches, delegations and contract

theory in monetary economics (see Rogoff, 1985; Walsh, 1995; Jensen, 1997; Halac and

Yared, forthcoming, among others). Our contribution with respect to this literature is to

allow the government to deviate from its commitments, consistently with Bilbiie (2011)

and Cochrane (2011). This has two implications. First, we consider the optimal design of

commitments as part of the“game”played between the government and the private sector.

This leads us to consider and model the government’s incentives (e.g., through reputation
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forces). Second, and more importantly, we investigate how limited commitment is not

only a constraint on the design of rules but can also simply prevent the government to

obtain a unique equilibrium. In dynamic settings as is the case of monetary economies,

we show that obtaining a unique equilibrium requires a large commitment ability. We

leave, however, to future research the investigation on how time-consistency limits the

commitment to history-dependent rules in monetary economies.

The focus of the literature on taxation is usually more on the best equilibrium that can

be sustained—see the recent contribution of Halac and Yared (2019). However, multiple

equilibria may still emerge in frameworks such as those of Chari and Kehoe (1990) or

Bassetto and Phelan (2008). In this literature, our paper is more closely connected

to Farhi et al. (2012), who first investigate time-consistent capital taxation in a static

model with an exogenous commitment ability and then consider the repeated setting to

endogenize commitment ability. In contrast to their approach, we not only look at the

best equilibrium outcome, but we investigate the full set of equilibria.

2 The static game
We start with a static game. The government first commits to a reaction function;

then, a continuum of atomistic private agents make decisions; finally, the government

acts. The government incurs a welfare cost if its ex-post action deviates from the reaction

function it has committed to. The cost allows us to obtain a continuum of commitment

abilities between full discretion and full commitment. We first show that, to solve the

coordination problem, the degree of commitment ability has to be strictly above a key

variable that measures the cost of controllability. We then show that, under mild con-

ditions, the cost of controllability is zero, and we discuss the cases in which it can be

strictly positive. Finally, we show how our findings apply to three standard macroeco-

nomic games: inflation bias, bailouts and capital taxation. In the last two examples,

which otherwise produce multiple equilibrium outcomes, any arbitrarily small commit-

ment ability is sufficient to rule out equilibrium multiplicity.

2.1 The environment

Consider an economy populated by a continuum of identical private agents and a gov-

ernment. There are three stages. First, the government commits to a reaction function,

ȳ, that maps any private-sector action x ∈ X to a policy action ȳ(x) ∈ Y , where X

and Y are compact subsets of R. Second, each private agent chooses an action ξ ∈ X,

whose average is x ∈ X. Finally, the government chooses an action y ∈ Y . As with

feasibility conditions, private decisions constrain government actions, so any government

action must belong to a non-empty closed subset D(x) ⊆ Y that depends on the average
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private action x. Finally, we focus on pure strategies.8

Competitive outcome. For a given allocation (x, y), the payoff of a private agent to play

ξ ∈ X is u(ξ, x, y), where u is strictly concave and twice continuously differentiable in ξ.

We define a competitive outcome as follows:

Definition 1 (Competitive outcome). A competitive outcome is an allocation (x, y) ∈
X × Y such that

y ∈ D(x), (1)

x = arg max
ξ∈X

u(ξ, x, y). (2)

We denote by C the set of competitive outcomes.

Condition (1) requires that the government action y is feasible given average private

action x, and Condition (2) requires that, given the allocation (x, y), it is optimal for any

individual to set ξ = x. As all private agents are alike, this implies that aggregate x is

indeed x.

Finally, to avoid making the implementation problem trivial, we assume that the

government cannot punish individual deviations directly. Thus, we assume that only the

aggregate private outcome x, not individual decisions ξ, is public information.

Government. Before any action, the government commits to a reaction function ȳ. Such

a reaction function corresponds to the commitment to take the action ȳ(x) if the average

private action is x. We assume that the government commits only to feasible actions;

that is, fo any x ∈ X, ȳ(x) ∈ D(x).9 We denote by Y (X) this set of functions.

The government cannot fully commit to the actions implied by its reaction function

and can renege on its past commitments. However, if the government plays an action

inconsistent with its reaction function, y 6= ȳ(x), it incurs a cost κ > 0. κ measures

the government value of sticking to a promise and will be referred to as the commitment

ability.10 For a given reaction function ȳ and an average private-sector action x ∈ X, the

8As this will become clearer, there is no loss of generality in doing so when the government plays last

and is not indifferent between multiple actions given aggregate private-sector action x, which we will

assume.
9Under full commitment ability, committing to an unfeasible action would lead to a violation of a

feasibility constraint. See Bassetto (2005) for further discussion about the role of feasibility constraints

in implementation problem. In the absence of commitment, the government can still select a feasible

action, despite the commitment to an unfeasible action. However, such a commitment would have no

effects on ex-post incentives to select one particular feasible action over another, and there is then no

loss of generality in our assumption.
10As a benchmark, we consider a fixed cost. We discuss the effect of considering more-general cost

functions in Section 2.2. We focus on fixed costs because, as we will show, in many macroeconomic

games, it is sufficient to have an arbitrarily small fixed cost to solve coordination problems.
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government selects an action y ∈ D(x) by maximizing :

r(ȳ, x, y, κ) =

{
w(x, y), if y = ȳ(x),

w(x, y)− κ, otherwise,
(3)

where w is a strictly concave and twice differentiable function in y. As a result of this

assumption, the government always has a unique best response to any aggregate private

action x.

The government selects its reaction function so as to maximize the ex-ante payoff

r̄(ȳ, x, y) defined as r(ȳ, x, y), but where w is replaced by w̄:

r̄(ȳ, x, y, κ) =

{
w̄(x, y), if y = ȳ(x),

w̄(x, y)− κ, otherwise,
(4)

where w̄ is a strictly concave and twice differentiable function in y. By selecting the

reaction function ȳ, the government affects its ex-post incentives through the commitment

ability κ. When κ = 0, the reaction function ȳ is immaterial.

Notice that when w̄(x, y) = w(x, y) = u(x, x, y), aside from the reneging cost, the

government is benevolent but disregards individual deviations. Considering a different

payoff function for the ex-ante choices by the government will be useful in some examples.

Timing and equilibrium. An equilibrium is characterized by three strategies. They are,

in chronological order: the reaction function ȳ ∈ Y (X); the private-sector strategy σh :

Y (X)→ X that maps reaction function ȳ into aggregate private-sector action x = σh(ȳ)

; and the government strategy σg specifies the government action y = σg(ȳ, x) ∈ D(x)

given the private-sector action x ∈ X and the reaction function ȳ ∈ Y (X). Figure 1

below summarizes the timing of the game.

time

Government commits to

ȳ ∈ Y (X)

Private sector chooses

x ∈ X

Government sets y ∈ D(x)

If y 6= ȳ(x), incurs a loss κ

Figure 1: Timing of the game

Defining an equilibrium in our context is not easy, as some reaction functions may

not necessarily allow for a continuation of equilibrium to form. The discontinuity in

payoffs may lead the government to favor ex-post actions that are not compatible with

any competitive outcomes. To circumvent this difficultly, we define the equilibrium in two

stages. We first define the set of strategies that allow for a continuation of an equilibrium

given the commitment to a reaction function, and, we then give the definition of an

equilibrium.

Let us first define the set of strategies for the private sector and the government’s

ex post action that allow for a continuation of an equilibrium after a reaction function.

Formally, ∀η̄ ∈ Y (X), let CE(η̄) be the set of strategies {h, g} such that

10



(i) (h(η̄), g(η̄, h(η̄)) is a competitive outcome; and

(ii) ∀x ∈ X, ∀η ∈ D(x), r(η̄, x, g(η̄, x), κ) ≥ r(η̄, x, η, κ).

Conditions (i) and (ii) require that, given a reaction function η̄, the continuation

strategies (h, g) constitute an equilibrium as in the standard models presented in Stokey

(1991) or in chapter 21 in Ljungqvist and Sargent (2018). The only noticeable difference

is that the reaction function matters for condition (ii) through the cost κ in r, which

depends on the reaction function η̄.11 We then define an equilibrium as follows:

Definition 2. A (subgame perfect) equilibrium is a reaction function ȳ, a private sector

strategy σh, and a government strategy σg such that, for x = σh(ȳ) and y = σg(ȳ, x),

∀η̄ ∈ Y (X) such that CE(η̄) is non-empty,

(i) (σh, σg) ∈ CE(η̄); and

(ii) r̄(ȳ, x, y, κ) ≥ r̄(η̄, σh(η̄), σg(η̄, σh(η̄)), κ).

The resulting allocation (x, y) ∈ X × Y is an equilibrium outcome. We denote

by Θ(κ) the set of such equilibrium outcomes and by v(κ) the set of equilibrium (ex-

ante) payoffs for the government. In particular, an allocation (x, y) ∈ Θ(0) is a Nash

outcome.

An equilibrium is a reaction function and the associated continuation of an equilibrium

that lead to the best ex-ante payoff for the government compared to any other reaction

functions that also allow for continuations of an equilibrium. Several comments are in

order.

First, for some reaction functions η̄ ∈ Y (X), the discontinuity in payoffs introduced by

the cost κ may prevent an equilibrium from forming afterwards, at least using standard

existence results. Of course, such situations cannot be an equilibrium outcome : an

equilibrium has to form after ȳ. In addition, we do not consider such reaction functions

when assessing (ii) in the Definition, implicitly putting an arbitrarily low payoff to the

government in situations in which no continuation equilibrium can form.

Second, it is crucial in this definition that the private sector should play consistently

with a competitive outcome after any reaction function, at least when possible –(σh, σg) ∈
CE(η̄). Individual optimality effectively puts a constraint on the private-sector strategy

σh that has to react to the government’s reaction function. Otherwise, without this

constraint, the government would not be able to induce the private sector to change its

11Notice that the government cannot play unfeasible actions, as we always require (both in- and

off-equilibrium) that y ∈ D(x) with x the action played by private agents. As a result and, as in

Bassetto (2005), the government cannot rule out a competitive outcome by playing (or promising to

play) unfeasible actions in our setting.
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behavior, as the private sector would be somehow able to “commit” to deviate from the

competitive outcome to prevent the government from making certain commitments.

Finally, what we are interested in is the set of equilibrium outcomes Θ(κ) –and not

necessarily the precise strategy profile that leads to such an equilibrium outcome– and the

properties of this set as a function of the commitment ability parametrized by κ. One of

our first tasks in the next subsection will be to move from Definition 2 to characterizations

of the set of equilibrium outcomes. In what follows, we make the following assumption:

Assumption 1. There exists at least one Nash outcome—Θ(0) is not empty.

As we will see, this assumption is necessary for the set of equilibrium outcomes, Θ(κ),

to be non-empty for any κ > 0.

Coordination problems and implementation. We can define the coordination problem

using the set of equilibrium outcomes Θ(κ).

Definition 3. The government faces a coordination problem when there exist multiple

equilibrium outcomes under discretion; that is, Θ(0) contains more than one equilibrium

outcome.

Given a commitment ability κ, the government implements an allocation (x, y) if

the set of equilibrium outcomes satisfies Θ(κ) = {(x, y)}.

A coordination problem is solved for a commitment ability κ when Θ(κ) is a singleton,

in which case we also talk about implementation. The minimum for κ such that Θ(κ) is

a singleton is the measure of the commitment ability required to solve the coordination

problem.

Ramsey allocation. Finally, an allocation of interest is the Ramsey allocation, which we

denote by (xR, yR). It corresponds to the best competitive outcome given the ex ante

objective function of the government –assuming that the government does not incur the

reneging cost, κ:

w̄(xR, yR) = max
(x,y)∈C

w̄(x, y). (5)

This allocation coincides with the standard definition of Ramsey allocation when the

government is benevolent (w̄ = u).

Notice that the Ramsey allocation (xR, yR) is not necessarily in the set of equilibrium

outcomes Θ(κ), as playing yR after xR may be time-inconsistent for the government.

In contrast, when (xR, yR) belongs to the set of equilibrium outcomes –the government

optimally plays yR after the private sector plays xR given the reaction function–, the

Ramsey allocation may not be the unique equilibrium outcome.12 Only in the case in

which (xR, yR) is the only equilibrium outcome will we say that the government can imple-

ment the Ramsey allocation. This is obviously the ideal situation from the government’s

ex-ante perspective.

12As Chari and Kehoe (2016) note, in this case, the Ramsey allocation is only weakly implemented.

12



2.2 Implementation under limited commitment ability

In this subsection, we investigate the equilibrium set as a function of the commitment

ability κ along the continuum [0,∞). Our main result is that implementation depends

only on three simple objects: first, the best time-consistent competitive outcome; second,

the controllability, which is the fact that the set of policy actions that deter private agents

from expecting an inferior outcome is non-empty; third, the cost of playing such actions—

the cost of controllability. When this latter cost is lower than the commitment ability, the

government can solve the coordination problem and implement the best time-consistent

competitive outcome.

To obtain these results, our main task is to convert the definition of an equilibrium

(Definition 2) that is about a strategy profile into characterizations of which allocations

can be an equilibrium outcome.

Best time-consistent competitive outcome. Let (xκ, yκ) ∈ C be the competitive outcome

that maximizes the government’s ex ante welfare, under the constraint that the govern-

ment prefers playing yκ instead of deviating and paying the cost κ—that is playing yκ is

time consistent after xκ. Formally:

max
(x,y)∈C

w̄(x, y) (6)

s.t. w(x, y) ≥ w(x, η)− κ,∀η ∈ D(x). (7)

As we will show, the best time-consistent competitive outcome is always the best equi-

librium outcome.13

Notice that (xκ, yκ) coincides with the Ramsey allocation (xR, yR) when κ ≥ κ̄, where

κ̄ ∈ R+ is the lowest cost such that the constraint (7) is not binding for the Ramsey

allocation:

κ̄ = max
η∈D(xR)

w(xR, η)− w(xR, yR). (8)

The threshold κ̄ measures the government’s temptation to deviate from the Ramsey policy

yR when the private sector has played xR.

Controllability. What should the government commit to in order to control the private

sector and force it to play the action consistent with the best constrained outcome xκ?

In principle, private agents can play any action x that is consistent with a competitive

outcome (x, y) ∈ C. To rule out a given private action x, the government should then

commit to and stick to an action y such that (x, y) is not a competitive outcome. By

definition, this means that the action y should make private agents better off playing

13(xκ, yκ) exists. (x0, y0) exists, as Θ(0) is not empty following Assumption 1. As a result, the set of

allocation (x, y) ∈ C satisfying the constraint (7) is not empty. As this set is a compact set and w̄ a

continuous function, it admits an upper bound.
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ξ 6= x if the aggregate private action is x 6= xκ. Formally, for any x ∈ X, the government

should select an action in the set:

Y(x) = {y ∈ D(x)| ∃ξ ∈ X, u(ξ, x, y) > u(x, x, y)} .

For any x 6= xκ, the government can discourage private agents from playing x if this set

Y(x) is non-empty.

Assumption 2 (Controllability). For any x ∈ X \ {xκ}, the set Y(x) is non-empty.

Under this assumption, the government can control the private sector’s actions and

force it to play xκ. But even if it can, it may be unable to credibly commit to all these

policy actions because such actions are (ex post) costly. Take an aggregate private action

x 6= xκ. To deter that action, the government has to commit to an action y ∈ Y(x).

Playing that action is costly to the extent that it is not the ex-post optimal action—i.e.,

the action that maximizes ex-post welfare y∗(x) = arg maxy∈D(x) w(x, y). The resulting

cost is then w(x, y∗(x))−w(x, y). Naturally, this cost is 0 when the ex-post optimal action

is sufficient to prevent private agents from playing x, that is, y∗(x) ∈ Y(x). When the

commitment ability κ is larger than this cost, the government will stick to its commitment

and play y, and the expectation of such an action will deter agents from playing x.

Of course, for each x ∈ X, the government selects the action that minimizes its cost

so that we can consider infy∈Y(x) w(x, y∗(x)) − w(x, y). Finally, the government has to

find such actions for all x ∈ X \ {xκ}, so that the cost to deter any action that differs

from xκ is:

Definition 4 (Cost of controllability). Let ρ ≥ 0 be the cost of controllability with:

ρ ≡ sup
x∈X\{xκ}

inf
y∈Y(x)

[w(x, y∗(x))− w(x, y)] , (9)

where y∗(x) = arg maxy∈D(x) w(x, y) is the ex-post best action of the government with

κ = 0.

The cost of controllability refers to the maximum cost that the government has to

tolerate ex-post to control the private sector. The cost of controllability is well defined

under Assumption 2 as, otherwise, no policy action may exist to deter the private sector

from playing some private-sector action x 6= xκ. The controllability assumption also

implies that the cost of controllability is finite (ρ <∞).14

The equilibrium set as a function of commitment ability. We can describe the equilibrium

set Θ(κ) using the best time-consistent competitive outcome (xκ, yκ) and the cost of

controllability ρ:

14That controllability implies that ρ < ∞ results from X and Y being compact sets and w being a

continuous function.
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Proposition 1. Under Assumption 2, the equilibrium set Θ(κ) is such that:

(i) Best time-consistent competitive outcome: (xκ, yκ) ∈ Θ(κ). The set of equi-

librium payoffs for the government v(κ) is a compact set and w̄(xκ, yκ) = max v(κ).

(ii) Coordination: If κ > ρ, the best equilibrium outcome (xκ, yκ) is implementable.

κ ≥ ρ is a necessary condition for implementation.

(iii) Otherwise, when κ < ρ, the welfares in the best and the worst equilibrium outcomes,

w̄(xκ, yκ) and vworst(κ) = min v(κ), are weakly increasing in κ.

Proof. See Appendix D.1

As a result of this proposition, the main variable to examine in determining the extent

to which a government can solve a coordination problem is ρ: a unique equilibrium obtains

when κ > ρ, and this equilibrium is the best time-consistent competitive outcome (xκ, yκ)

defined above.

The proof goes as follows. On the one hand, the government can commit to a reaction

function such that the response to xκ is yκ—i.e., ȳ(xκ) = yκ. Such a commitment

implies that the deviation from yκ would lead to a cost κ for the government, thus

making yκ a time-consistent action for the government. On the other hand, when ρ < κ,

the government commits to play ȳ(x) ∈ Y(x), which discourages agents from playing x

whenever x 6= xκ, as in Bassetto (2005). ρ < κ ensures that ȳ(x) can be chosen so that

the government is ex-post better off playing that action rather than anything else.

The proposition also clarifies that the best time-consistent competitive outcome is

always an equilibrium outcome, one that leads to the best equilibrium payoff for the

government.

Finally, the proposition provides some comparative statics on the equilibrium set as

a function of commitment ability. Figure 2 summarizes the result of Proposition 1 in the

two cases in which ρ ≤ κ̄ and ρ > κ̄, where κ̄ is the minimum level of commitment ability

such that the Ramsey allocation is an equilibrium outcome and (xκ, yκ) = (xR, yR). As

the figure illustrates, increasing κ improves the equilibrium outcomes, not only the best

one but also the worst one.

Full commitment ability. A direct implication of Proposition 1 is when the govern-

ment can fully commit—i.e. κ =∞.

Corollary 2 (Bassetto (2005); Atkeson et al. (2010)). Suppose that κ =∞ and Assump-

tion 2 is satisfied. Then, the government implements the Ramsey outcome, Θ(∞) =

{(xR, yR)}.
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κ

Equilibrium values v(κ)

vR

v0 = w̄(x0, y0)

vworst(0)

0 ρ κ̄

vκ = w̄(xκ, yκ)

Multiple eq. outcomes (xκ, yκ) is

the unique

eq. outcome

Ramsey is the

unique eq. outcome

Case κ̄ ≤ ρ

κ

Equilibrium values v(κ)

vR

v0 = w̄(x0, y0)

vworst(0)

0 ρκ̄

vκ = w̄(xκ, yκ)

Multiple eq. outcomes Multiple eq.

outcome, incl.

(xR, yR)

Ramsey is

the unique

eq. outcome

Case κ̄ > ρ

Figure 2: Best and worst equilibrium payoffs as a function of κ.

In the two graphs, we plot the best (vκ) and the worst (vworst) equilibrium payoffs for the government as a function

of commitment ability (κ). The left-hand panel corresponds to the case in which κ̄ –the minimum commitment ability

required to achieve the Ramsey outcome– is below the cost of controllability ρ. The right-hand panel corresponds the case

in which κ̄ is above ρ.

When κ = ∞, κ is larger than κ̄. The Ramsey allocation is an equilibrium outcome

and, by definition, the best one. When κ = ∞ and Assumption 2 is satisfied, the cost

of controllability is well defined and κ is larger than ρ: the government can credibly rule

out any inferior outcomes.

No additional commitment needed to solve the coordination problem. The critical

variable for the ability of the government to solve the coordination problem is ρ. This

variable captures the welfare cost for the government to engage in actions that discourage

individual private agents from playing something other than the government desires.

When is a given private action x ∈ X difficult to rule out? Inspecting the definition of

ρ in Definition 4 reveals that discouraging agents from playing actions x that are not part

of any competitive outcomes is not costly at all as playing the ex-post optimal action is

already sufficient to deter private agents from playing x—formally, y∗(x) ∈ Y(x). More

generally, any action x—whether part of a competitive outcome or not—such that the

ex-post optimal policy does not lead to a competitive outcome (y∗(x) ∈ Y(x)), is costless

to deter. The remaining question is, thus, whether or not it is costly to deter an action

x ∈ X such that y∗(x) /∈ Y(x).

In many examples, private agents’ marginal utility responds to government actions.

In this case, we show that it is easy to rule out not only competitive outcomes that are

not Nash outcomes but also Nash outcomes themselves:

Proposition 3. (i) The government implements (xκ, yκ) if and only if it can credibly deter

the private sector from playing the actions x ∈ X different from xκ and consistent

with a Nash outcome.
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(ii) Suppose that any Nash outcome (x, y) ∈ Θ(0) is interior and u13(x, x, y) 6= 0; then,

ρ = 0 and Θ(κ) = {(xκ, yκ)} for any κ > 0.

Proof. See Appendix D.2

Formally, a Nash outcome (x, y) ∈ Θ(0) is interior when there exists an open interval

I(x) ⊂ D(x) containing y and when x ∈ X̊, the interior of X.

The proposition first clarifies that only the private-sector actions belonging to a Nash

outcome may be costly to deter—that is, contribute to the cost of controllability ρ.

Second, the proposition shows that, if all the Nash outcomes are interior and if

the marginal utility of private agents locally depends on the policy action, then the

government can deter all the actions associated with a Nash outcome and, hence, the

government can solve the coordination problem at no cost.

To see that, take an interior Nash outcome (x, y) such that u13(x, x, y) > 0. As x is

interior, the marginal utility of an individual agent is zero for the allocation (u1(x, x, y) =

0), as, otherwise, this agent would be better off by setting ξ 6= x. Given that u13(x, x, y) >

0, the government can select an action slightly above the ex-post best action y and

increase the individual agent’s marginal utility above 0; that is, u1(x, x, y) > 0. In turn,

the individual agent is better off increasing its action ξ above x to maximize utility, which

is feasible since the action x belongs to the interior of X. Finally, the policy action is

almost not costly since it can be selected arbitrarily close to the ex-post best action. The

same reasoning applies when u13(x, x, y) < 0.

When a Nash outcome is not interior, the cost of controllability may be high (ρ > 0)

even if u13 6= 0. The government may be unable to depart from its ex-post best action

locally in the right direction (in the above paragraph, choosing an action y slightly above

the ex-post optimal one y∗(x)) because of a feasibility constraint on its action or because

the private sector cannot move away from the aggregate private action x locally in the

right direction (in the above paragraph, choosing ξ slightly above x). In such a case,

and under the controllability assumption, only a costly policy action may succeed in

deterring private agents from playing the undesired action x 6= xκ, leading to a high cost

of controllability.

In the next subsection, we illustrate how Proposition 3 applies in different examples,

such as the Farhi and Tirole (2012) model of bailouts and the capital taxation problem.

2.3 Examples

The model laid out above can encompass multiple macroeconomic situations under

discretion (κ = 0). In this subsection, we describe some of these situations and illustrate

how time-consistency may or may not lead to coordination problems—see Table 1 for a

summary. The reader interested only in the general results may skip this subsection.

17



To start with, the model of bailouts by Farhi and Tirole (2012) illustrates how time-

inconsistency leads to a coordination problem. This happens even though the Ramsey

outcome is an equilibrium outcome. Second, the model of inflation bias from Barro and

Gordon (1983a) illustrates that, despite time-inconsistency, only one equilibrium outcome

may arise, even though this equilibrium outcome is inferior to the Ramsey outcome. In

Section 4, we use this model in a repeated context. Finally, under some conditions, a

simple model of capital taxation, as in Chari and Kehoe (1990), illustrates a situation of

time-inconsistency leading to a coordination problem where the Ramsey outcome is not

an equilibrium outcome.

Time-inconsistent Coordination

Ramsey allocation Problem

Inflation bias X

(Barro and Gordon, 1983)

Bailouts X

(Farhi and Tirole, 2012)

Capital taxation X X

(Chari and Kehoe, 1990)

Table 1: Coordination problem and time-consistency of the Ramsey allocation.

2.3.1 Bailout problem.

The environment. Consider a bailout problem as in Farhi and Tirole (2012), from which

we borrow the notations. There are three periods t ∈ {0, 1, 2}. The economy is populated

by risk-neutral bankers, deep-pocket risk-neutral investors and a government.

At date 0, bankers receive an endowment A, and they can invest in a risky investment

opportunity and borrow short-term. At date 1, with probability α, the investment op-

portunity yields (π+ ρ1)i for i invested at date 0, among which (π+ ρ0)i can be pledged

to investors with ρ0 < 1. With probability 1−α, investment yields only πi at date 1 and

ρ1j at date 2 with j ≤ i the amount of resources reinvested at date 1. In this case, only

ρ0j can be pledged to investors. The returns on investment opportunities are perfectly

correlated across bankers. At date 0, bankers optimally set a contingent short-term debt

contract equal to πi in the absence of crisis and di otherwise.

The government sets the real rate of interest. Between date 0 and date 1, as well

as between date 1 and date 2 when investment is successful, the government optimally

selects an interest rate equal to 1. In the event of a crisis, the government sets an interest

rate R ≤ 1 between date 1 and date 2 to maximize its objective function:

−L(R)− (1−R)ρ0j

R
+ βj (10)
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with L(R) a deadweight loss associated with setting interest rates below 1. L satisfies

L(R) ≥ 0, L(1) = L′(1) = 0 and L is decreasing on [ρ0, 1]. The second member of (10)

corresponds to the subsidy from savers to borrowing banks at a rate below 1. The last

member stands for the gain due to higher date-1 reinvestment—by convention, j = i in the

case of a successful investment. The date-0 objective of the government is the expectation

of the date-1 objective function. In this model, bankers play first by selecting investment

i and short-term debt d. Then, the government plays R at date 1 (in the event of a crisis),

and then the bankers decide to reinvest if needed.

When investment is unsuccessful and needs reinvestment, bankers optimally select

reinvestment j so that:

j = min

{
π − d
1− ρ0

R

; 1

}
i. (11)

At date 0, this leads bankers to select investment i so that:

i =
A

1− π − αρ0 + (1− α)ξ
, (12)

where ξ ≡ π − d is the liquidity ratio; that is, ξi is the banker’s cash-flow available at

date 1 in case of a crisis net of debt repayment di. ξ maximizes

(ρ1 − ρ0)(αi+ (1− α)j) = (ρ1 − ρ0)

(
α + (1− α) ξ

1−ρ0/R

1− π − αρ0 + (1− α)ξ

)
A. (13)

Mapping with the general model. Farhi and Tirole (2012)’s model is a game between

bankers at date 0 and the government’s intervention in the case of unsuccessful investment

at date 1. Notice that the individual banker’s action ξ does not depend on other actions,

except through the dependence of the policy rate R on the aggregate bankers’ decisions.

Using ξ as defined above, we can then map this model to our general setting as follows:

ξ ∈ [0, 1− ρ0], x = ξ, y = R D(x) = [ρ0, 1].

We can express the objective function (10) as a function of y = R and x = ξ by using

(11) and (12). This defines w(x, y). Finally, (13) defines u(ξ, x, y).

In this example, the objective function relevant ex ante for the government differs from

the one relevant ex post due to the uncertainty around the success of the investment at

date 1. Ex ante, this objective function is:

w̄(x, y) = αβi(x) + (1− α)

(
−L(R)− (1−R)ρ0j(x)

R
+ βj(x)

)
.

First, under the assumption that β is sufficiently small (β ≤ 2−α−π−ρ0), the Ramsey

allocation is such that R = 1 (Proposition 1 in Farhi and Tirole (2012)). The Ramsey

allocation is an equilibrium outcome in this model. This happens under the condition
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that (β + ρ0 − 1)A/(1 − π − αρ0) ≥ L(ρ0) (Corollary 1 in Farhi and Tirole (2012)).

Second, there are multiple other equilibria with bailout, R < 1 (see Proposition 2 in their

paper): this model features a coordination problem, even though time-inconsistency does

not prevent the Ramsey allocation from being an equilibrium outcome.

The equilibrium set under limited commitment ability. Our general results imply that,

in this model, for any positive—and potentially arbitrarily low—κ > 0, the Ramsey

allocation is the unique equilibrium outcome. Indeed, the inspection of the objective

function of bankers (13) indicates that u13 < 0 and that the Nash outcomes, with the

exception of the Ramsey outcome, are interior. As a result, the conditions of Proposition

3 are satisfied.

But how does this work in practice and how can the government deter bankers from

anticipating a bailout? Figure 3 illustrates what the government may do.
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Figure 3: Obtaining a unique equilibrium in Farhi and Tirole (2012) model of bailouts

In this graph, we plot the set of competitive outcomes (C), the ex-post optimal response by the government as a function

of private-sector actions x (y∗(x)) and, finally, one reaction function ȳ that allows the government to select a unique

equilibrium outcome, when this reaction function differs from the ex-post optimal reaction function y∗. Notice that such

a reaction function ȳ allows the government to implement the Ramsey allocation.

In this model, the ex-post optimal policy is to set the interest rate R at the level at

which the private sector expected it, at least when this interest rate does not deviate

much from the Ramsey level R = 1. The cost of decreasing R is continuous in R,

while there is a fixed gain related to refinancing projects. This leads to a continuum

of equilibria. To prevent this, the government simply commits to a bailout policy very

close to the one expected—R = Re + ε—where Re is the expected rate by the private

sector. Then, the government calibrates ε as a function of its commitment ability κ:

w(x(Re), R+ ε) ≤ w(x(Re), R) +κ. As can be observed in Figure 3, such a bailout policy

prevents any equilibrium to form where R < 1.

How realistic are such partial bailouts? Implementing this solution may be quite in-
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volved, first because it may require eliciting the private sector’s expectations and, second,

because it also requires that private agents are sufficiently responsive to small variations

in the expected policy. However, in other contexts, such as the rescue of a sovereign

like Greece during the euro area sovereign debt crisis, a form of partial bailouts was

put in place with private-sector involvement (PSI). Our result suggests that commit-

ting to a limited private-sector involvement may be sufficient to rule out expectations

of bailout in equilibrium. In addition, such a low-cost commitment to partial bailouts

make non-necessary Farhi and Tirole (2012)’s solution, which requires regulating bankers

by imposing a cap on short-term debt or, equivalently, a liquidity requirement at date-0,

whenever the government cannot perfectly commit.

2.3.2 Inflation bias problem.

The environment. Consider the inflation bias model à la Barro and Gordon (1983a).

First, the government commits to a reaction function that maps aggregate households’

inflation expectations to a level of inflation; second, households form expectations about

current inflation, the average of which is πe; then, the government picks the inflation rate

π; finally, output z is realized:

z = λ(π − πe), (14)

where λ > 0 is the slope of the Phillips curve. As in Bassetto (2019), the objective of

each household is to minimize its forecasting error (all nominal contracts that households

and, more generally, the private sector can write are a source of costs for forecast errors):

u(ξ, π) = −(ξ − π)2. (15)

Therefore, a competitive outcome in this setting is simply one with ξ = π = πe, and so

z = 0 in any competitive outcome.

The government seeks to minimize the loss function:

v(z, π) = −(z − y∗)2 − α(π)2, (16)

where α > 0 is the relative weight of the government’s inflation stabilization objective

and y∗ is the source of the inflation bias.

Mapping with the general model. We can map this example to the general setting as

follows:

ξ ∈ [π; π̄], x = πe ∈ [π; π̄], y = π ∈ [π; π̄], D(x) = [π; π̄],

u(ξ, x, y) = −(ξ − y)2, and w(x, y) = −(λ(y − x)− y∗)2 − αy2.

The best competitive outcome (the Ramsey allocation) is (zR, πR) = (0, 0). Under dis-

cretion (κ = 0), there exists a unique equilibrium outcome, the pair (zm, πm) = (0, λ
α
y∗).
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When y∗ > 0, this equilibrium outcome differs from the Ramsey allocation. Under discre-

tion, the inflation-bias model does not suffer from a coordination problem, even though

time-inconsistency prevents the Ramsey allocation from being an equilibrium outcome.

The equilibrium set under limited commitment ability. In this model, there is a unique

Nash outcome. The same is true for any positive commitment ability—note that u13 = −2

and the conditions of Proposition 3 are satisfied. The uniqueness of the equilibrium

outcome can be observed in the left panel of Figure 4, where the set of competitive

outcomes intersects the set of the ex-post optimal policy only once.

However, the Nash outcome does not coincide with the Ramsey outcome. The best

inflation outcome πκ with κ > 0 is a strictly decreasing function of κ for κ ∈ [0; κ̄], and

then πκ = 0 for any κ ≥ κ̄. To further illustrate this outcome, the dashed blue line in

the right panel of Figure 4 plots πκ as a function of the commitment ability κ, for the

following parameters: α = 1, λ = 0.5, and y∗ = 0, 005. The red line reports the Nash

outcome, πN = λ
α
y∗, and the yellow line reports the Ramsey allocation, πR = 0. We

observe that the inflation rate in the best equilibrium outcome, xκ, goes continuously

from the Nash level to the Ramsey level when κ increases.
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Figure 4: Equilibrium outcome in the Barro-Gordon model and equilibrium realized

inflation as a function of the commitment ability κ

In the left-hand panel, we plot the set of competitive outcomes and the ex-post optimal actions (y∗(x)) as a function of

private agents’ average action x. In the right-hand panel, we plot the equilibrium realized inflation as a function of the

commitment ability κ, along with realized inflation in the Ramsey outcome and in the Nash outcome.

2.3.3 Optimal capital taxation problem.

The environment. Consider a two-period taxation problem (adapted from Fischer, 1980;

Chari and Kehoe, 1990; Bassetto, 2005). Time is discrete and indexed by t = {1, 2}.
The economy is populated by a continuum of households and a government. At date 1,

each household receives an endowment ω and decides to consume c̃1 or to invest ξ in a

linear saving technology, which yields R(k)ξ > 1 units of goods at date 2, where R(k) is
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a decreasing function of aggregate capital k. At date 2, households work and we denote

by l the corresponding number of hours. We assume that the marginal product of labor

is 1. The government can tax the return of capital at a tax rate δ and labor income at a

rate τ . Then, each household consumes the after-tax return of its investment and labor.

Households value the consumption profile (c̃1, c̃2) and labor l̃ using the utility function

ũ(c̃1, c̃2, l̃). The government decides on taxes so as to maximize households’ utility subject

to the constraint to finance an exogenous amount of public expenditures G—its budget

constraint is G ≥ δRk + τL.

The timing is as follows. First, the government commits to a reaction function δ̄, which

maps a date-1 aggregate saving k to a (promised) tax rate δ = δ̄(k). Then, households

consume (in aggregate) c1 and invest k. The government selects the tax on capital income

δ and the tax on labor τ . If the government sets a tax rate different from δ = δ̄(k), it

incurs a reneging cost κ. Finally, the households choose l and consume c2.

Households select date-1 saving ξ for a given aggregate capital k and expected tax

rates (δ, τ) as follows:

max
ξ,l,c1,c2

ũ(c1, c2, l)

s.t. c1 ≤ ω − ξ and c2 ≤ R(k)ξ(1− δ) + l(1− τ).

A competitive outcome must be such that ξ = k.

Under discretion (κ = 0), at date 2—that is, given k and c1—the government selects

tax rates (δ, τ) by maximizing:

max
δ,τ,c2,l

ũ(c1, c2, l)

s.t. − ul
uc2

= 1− τ and G ≤ δR(k)k + τL.

The first constraint corresponds to the optimal consumption-leisure household’s decision,

the second to the government budget constraint. These two constraints and the equality

l = L implicitly define the labor tax τ(δ, k) and the individual labor decision l(δ, k) as a

function of the capital tax rate δ and the aggregate date-1 saving k. Notice that these

functions are unaffected by the presence of a reneging cost. The date-2 decision by the

government to tax labor and the households’ decisions to consume and to work are non-

strategic. The strategic interaction concerns date-1 private saving decisions and date-2

capital taxation.

Mapping with the general model. The model can be linked to the general setting defined

above as follows.

ξ ∈ [0;ω], x = k ∈ [0;ω], y = δ ∈ [0, 1], D(x) = [0; 1],

and u(ξ, x, y) = ũ(ω − ξ, Rξ(1− y) + (1− τ(y, x))l(y, x), l(y, x)).
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From the date-2 perspective, taxing capital is not distortive, while taxing labor is.

Therefore, under discretion, the government taxes capital as much as needed to finance

government expenditures. Under discretion, there exists an equilibrium in which house-

holds expect a tax rate δ = 1 and do not save. There exists at least another equilibrium

in which taxes on capital do not prevent households from saving when government’s

expenditures are low enough and the return on capital is high enough.

In the end, time-inconsistency in the capital taxation model both prevents the Ramsey

allocation from being an equilibrium outcome and leads to a coordination problem as

multiple equilibria emerge.

The equilibrium set under limited commitment ability. In this example, our general

results help to rule out only interior Nash outcomes that are inferior for the government

and the Nash outcome where capital is taxed at 100% is not an interior Nash outcome.

Despite this, an arbitrarily small commitment ability is sufficient to rule out all inferior

Nash outcomes.

Let us start with our general results. The controllability assumption depends on the

combination of second derivates of ũ as follows:

u13(x, x, y) =
∂l

∂y
(R(1− y)ũ22 − ũ12 +R(1− y)ũ23 − ũ13)−Rũ2. (17)

When the utility function ũ is separable in each argument, u13 is of the sign of ∂l
∂y
R(1−

y)ũ22−Rũ2, which is strictly negative when ũ is strictly increasing and strictly concave in

c2: an increase in the tax rate y decreases saving ξ. Under these assumptions, all interior

Nash outcomes can be ruled out with an arbitrarily small commitment ability—but, this

is not the case of the outcome where capital is fully taxed.

Let us illustrate how all the inferior Nash outcomes can be ruled out, including the

one where capital is fully taxed. To this purpose, we calibrate the model as follows:

u(c1, c2, l) = 1/4 log (c1) + β (c2 − l2/2). Parameters are set to R = β = 1, ω = 1, and

G = 0.1.

Figure 5 plots the set of competitive outcomes (in red) and the ex-post optimal policy

(in blue)—the set of Nash outcomes is the intersection of the two. The best outcome is

the one where capital is less taxed and savings are high. In black, we plot the reaction

function that allows the government to rule out the two inferior outcomes. As we already

discussed, this reaction function needs to differ from the ex-post optimal policy only for

the inferior outcomes. In this case, the government commits to a capital tax rate lower

than the ex-post optimal rate.

As can be observed, the interior Nash outcome can be ruled out by committing to an

arbitrarily close tax rate, which makes the ex-post cost of such a commitment arbitrarily

small—thus requiring only an arbitrarily small commitment ability. However, the same

logic cannot be applied to the Nash outcome where capital is fully taxed: the tax rate
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should be reduced by a substantial amount to push individual households to save. Yet,

such an important reduction in the tax rate is not costly for the government: when

aggregate capital is 0, modifying the tax rate yields 0 variations in the capital tax income

received by the government.
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Figure 5: Equilibrium capital stock and capital taxation

This graph plots the set of competitive outcome (C) and the ex-post optimal action y∗(x) as a function of private agents’

action x. In addition, we add to this graph the reaction function ȳ that is sufficient to rule out all equilibria except the

best one, when this reaction function differs from the ex-post optimal reaction function y∗.

2.4 Interpreting κ?

To conclude this section, let us discuss what may be behind the cost κ.

Reputation loss. A first interpretation of the cost κ is that this cost captures the reputa-

tion loss associated with a deviation from past announcements (see Dovis and Kirpalani,

forthcoming, for such a recent model or reputation loss in macroeconomics). Suppose,

indeed, that there are two types of policymakers, one that can perfectly commit to reac-

tion functions and the other one that cannot and sets its policy under discretion. When

the type of the policymaker cannot be observed, private agents form beliefs about its

type. In this environment, playing something else than the reaction function ȳ(x) leads

the discretion-type policymaker to reveal its type and to lose any gain from being pooled

with the commitment-type policymaker.

Remark. Whereas reputation loss may provide micro-foundations for commitment ability,

we show in Section 4 that the repetition of the static game does not—the dynamic incen-

tives in the repeated game setting is also sometimes called reputation in macroeconomics.

Political institutions. A second interpretation of the cost κ is the cost due to the deci-

sion process needed to deviate from a reaction function. Such a deviation may require

to change a law or a regulation, requiring a potentially costly political and bureaucratic
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process—for example, as a result from disagreement between political parties (e.g., Pigu-

illem and Riboni, 2021, in the context of fiscal policy). Such kind of costs may exist when

decisions are made by committees, as it is the case in policy institutions such as central

banks (see, for example, Riboni, 2010).

Judicial institutions. A third interpretation of the cost is the fact that legislations may

put constraints on the degree of discretion of policymakers. This is, for example, the case

of the Administrative Procedure Act of 1946 in the US, which requires that regulations by

agencies should not be“arbitrary and capricious, an abuse of discretion”. Especially under

the “Hard Look” doctrine, this requires agencies to sufficiently motivate their decisions

to change their set course of actions.

Intrinsic preference. The potential embarrassment of the policymaker—when deviating

from past commitments—emphasized by Woodford (2012) may be related to an intrinsic

preference by the policymaker to stick to commitments. Also, such a preference may be

shared by private agents so that a deviation by the policymaker may result into a welfare

loss.

Cognitive cost/bounded rationality. Finally, the cost associated with a deviation may

simply be the cost of acquiring and processing information to find the optimal deviation.

3 Limits to implementation in static settings

This section documents three situations in static settings in which, contrasting with

our benchmark result (Proposition 3), a non-negligible commitment ability is needed for

implementation: imperfect information, fixed costs and discrete action sets. For the sake

of exposition, we derive our results in the capital taxation problem but they can be easily

extended to the general setup of Section 2.

3.1 Imperfect information

In this subsection, we show that more commitment ability may be needed for imple-

mentation when the government imperfectly observes the private sector action. The main

intuition of this result is that, in such a configuration, the expectations of government

action are continuous in the private action, x, preventing the government from adopting

a deterring strategy that is not ex-post costly.

Suppose that, when the government selects the level of capital taxation, δ, it imper-

fectly observes the level of capital k+ ε where ε is a noise on a bounded compact support

|ε| < ε̄ including 0.15 Then the government observes the true level of capital and sets

15Since k ∈ [0, ω], the support of the noise has to be capital dependent at least for capital levels close

to 0 and ω. But this will not play an important role in the result and the noise could be allowed only

for interior levels of capital. See Appendix D.3 for a formal definition.
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the labor tax so that the labor and capital income tax revenues cover the government

spending G.

Imperfect information crucially modifies the Euler equation at date 1. Instead of

correctly expecting the future tax level δ, the private agents take date-1 decision based

on their expectations of future capital income tax, Eεδ(k + ε), over all possible noises ε:

ũ1 = Eε [βR(k)(1− δ(k + ε))ũ2] . (18)

The government deters the private agents from investing a level of capital k ∈ (0, ω),

if the above equation is not verified for ξ = k, that is, if the ex-post return on capital

is not consistent with optimal consumption smoothing. Using the same calibration as in

Section 2, this condition boils down to:

1

4

1

1− k
6= (1− Eεδ(k + ε)). (19)

Since δ is bounded, the left-hand-side member is continuous in k. The government cannot

count on a discontinuity in its actions for implementation contrary to the baseline case

with perfect information because the expected action is always continuous. This con-

straint makes the commitment ability required for implementation higher than its perfect

information counterpart:

Proposition 4. In the capital taxation problem with imperfect information, there exists a

threshold κε > 0 such that when the noise is small enough (ε̄→ 0), for any commitment

ability κ > κε there exists a unique equilibrium outcome. For strictly lower levels, multiple

equilibrium outcomes exist.

Proof. See Appendix D.3.

Introducing noise leads to substantially different results compared with Proposition

3. A strictly positive commitment ability is required to implement a unique equilibrium,

even in the limit case where noise is close to 0. The threshold κε plays a similar role

than the cost of controllability ρ in Proposition 3, but depends on the ex-post incentives

to deviate not only around Nash equilibria but also far away from them. This difference

is due to the fact that private agents expect a government action that is continuous in

x which forces the government to count on continuous reaction function to implement a

unique equilibrium.

To better understand these results, panel (a) in Figure 6 plots the set of competitive

outcomes, the ex-post optimal policy action and the reaction function required to obtain a

unique equilibrium. As we noticed, noise requires the reaction function to be a continuous

function of private actions. As a result, the reaction function is sometimes far from the

ex post optimal policy action. The commitment ability that is required to implement a

unique outcome is then the largest difference in welfare terms between these two curves.
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Figure 6: Equilibrium capital stock and capital taxation when the noise is close to 0.

This graph plots the set of competitive outcome (C), the ex-post optimal action y∗(x) as a function of private agents’

action x and the reaction function ȳ that is sufficient to rule out all equilibria except the best one, when the size of the

noise is close to 0.

This leads to the second difference with Proposition 3: as illustrated by panel (b) in

Figure 6, the largest commitment ability is reached for a level of capital x that is not

a Nash outcomes and, in contrast, the distance in welfare terms between the reaction

function and the ex post optimal action is 0 for Nash outcomes—even if the reaction

function implies an action substantially different that the ex post optimal one when

x = 0, the welfare cost is 0. From Proposition 3 in perfect information, this second point

would imply a cost of controllability equal to 0—and a required commitment ability of

0. With noise, one has also to consider incentives to deviate away from Nash outcomes:

the government has to stick to the reaction function ȳ and not deviate from it even away

from Nash outcomes, or it will create discontinuities—here, jumps from ȳ to y∗—which

would introduce multiple equilibria.

A general result? Do noise always lead to a strictly positive required commitment abil-

ity? The answer is, in general, no. This is the case only when the reaction function

under perfect information is discontinuous. In contrast, when the reaction function is

continuous under perfect information, introducing some noise does not modify the results

of Proposition 3. An example of such a situation is the bailout problem as illustrated by

Figure 7.

3.2 Fixed cost

In this subsection, we include a fixed cost for agents to depart from the aggregate

action x. More precisely, in the capital taxation problem, we assume that investors pay a

cost θ when they choose an action ξ that differs from the aggregate one x. A competitive
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Figure 7: Equilibrium capital stock and capital taxation when the noise is close to 0.

The graph on the left plots the set of competitive outcome (C), the ex-post optimal action y∗(x) as a function of private

agents’ action x and the reaction function ȳ that is sufficient to rule out all equilibria except the best one, when the size

of the noise is sufficiently close to 0. The graph on the right reports the relative welfare gain in percentage of an ex-post

optimal deviation from competitive outcome and from the reaction function ȳ from the right graph.

outcome is then any couple (x, y) such that y ∈ D(x) and

u(x, x, y) ≥ max
ξ∈X

u(ξ, x, y)− θ. (20)

The cost θ can be viewed either as the cognitive cost associated with the computation

of the best action16 or a cost paid when an investor action deviates from others’ choice —

a social norm. Anyway, such a cost makes agents preferring to comply with the aggregate

action rather than taking its best action when the optimizing gain is lower than the

cost θ. This new force tends to reinforce conformism and raises the ex-post cost for the

government to deter undesired Nash outcomes: choosing an action close to the ex-post

optimal action is no more sufficient. We therefore get the following result:

Proposition 5. Denoting by ρθ the cost of controllability cost associated with the cognitive

cost θ, then ρθ increases with θ and ρθ > 0 whenever θ > 0.

Proof. See Appendix A.3.

To deter the low-capital Nash outcome, the government must rely on a capital tax that

sufficiently differs from the ex-post optimal one. Otherwise, when the aggregate capital

coincides twith the low-capital Nash level, the cognitive cost θ dominates the gain for an

individual investor from optimizing its investment and deviating from the aggregate level

(ξ 6= x).

16In Appendix A.3, we present a potential foundation of such cost based on bounded rationality.
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3.3 Discrete action sets

Cost of controllability can also be strictly positive when agents face discrete choices.

In this subsection, we modify the capital taxation problem to allow for a discrete set of

actions by the private-sector or by the government. In both cases, the cost of controlla-

bility ρ depends on the distance between two discrete values: the ability to implement a

single equilibrium outcome only depends on “how” discrete the set of actions is.17

Indivisible capital. We first consider a discrete set of investment levels: ξ ∈ {k0, . . . , kn}
where n > 3. For simplicity, we assume that there exist three levels k0 = 0, kp, and kq

with p < q < n that correspond to the three levels of capital associated with the no-,

low-, and high-capital Nash equilibria in the model with a continuous set of actions as

described in Section 2.3.3. Naturally, these three levels of capital k0, kp, and kq also

belong to the set of equilibrium outcomes with a discrete set of private actions.

In this case, the cost of controllability is higher than the one in the continuous action

set benchmark. When the private-sector action set is discrete, the government must

deviate sufficiently from y∗(kp) such that the best private action ξ anticipating kp is not

kp. More formally, this requires to find an action y such that, there exists q 6= p so that:

u(kq, kp, y) > u(kp, kp, y). (21)

On the other hand, this action y is costly for the government as it requires to deviate

from y∗(kp) and the cost is w(kp, y
∗(kp)) − w(kp, y), thus requiring a strictly positive

commitment ability κ.

Discrete set of tax levels. An alternative source of discretization is on the government

side. Let us assume that the government selects a capital tax income in a discrete set

δ ∈ {δ0, ..., δn} with δ0, δp, and δq denoting the three equilibrium tax levels in the absence

of commitment ability and continuous set of policy actions. In this case, the cost of

controllability is at least:

min
r 6=p

w(kp, δp)− w(kp, δr) > 0.

Therefore as for discrete private actions, discrete set of tax levels raises the cost of con-

trollability compared with the continuous case.

4 The repeated game
We now consider the infinitely repeated version of the static game and, again, inves-

tigate how the equilibrium set depends on the commitment ability κ. In particular, we

17The reason why actions are discrete is beyond the scope of this paper. To make things more palatable,

on the government side, one can have in mind political economy constraints that force public authority

to favor bold policy movements. On the private sector side, discrete choices can come from information

frictions such as rational inattention or physical constraints.
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determine the conditions under which the the coordination problem is solved. We show

that the private sector’s reactions to government decisions lead the commitment ability

required to implement a unique outcome to be larger than in the static case. We apply

our findings to the repeated inflation bias problem.18

4.1 The environment

This subsection describes the repeated version of our static game, the strategies of

the agents and the equilibrium definition.

The repeated game. Each date t ∈ {0, 1, ...} corresponds to a static game with the

intra-period timing of actions of Section 2. First, the government commits to a reaction

function ȳt ∈ Y (X). Then, private agents choose an action ξt ∈ X, and xt ∈ X is the

aggregation of all individual private agents’ decisions. Finally, the government plays an

action yt ∈ D(xt).

We denote by ht the history of public actions until the end of date t which includes

the reaction function to which the government commits, the aggregate action played by

the private agents and the action played by the government. We also denote by Ht the

set of all possible histories until the end of date t. Histories are defined recursively as

follows: ht = {ht−1, ȳt, xt, yt} and h−1 = ∅. As in the static game, individual private

actions are private information.19

The payoff for an individual private agent playing a sequence {ξt}∞t=0 is
∑

t≥0 β
tu(ξt, xt, yt),

where β ∈ [0, 1] is the private agents’ discount factor and the payoff function u is strictly

concave and continuously differentiable on X ×X × Y .

The payoff of the government is the discounted sum of the instantaneous flow of utility

r(ȳt, xt, yt, κ):

V g
τ ({ȳt, xt, yt}t≥0) =

∑
t≥τ

βtr(ȳt, xt, yt, κ), (22)

where the instantaneous flow of utility r(ȳt, xt, yt, κ) is given by:

r(ȳt, xt, yt, κ) =

{
w(xt, yt), if yt = ȳt(xt)

w(xt, yt)− κt, otherwise,
(23)

where κ ≥ 0 is the cost of deviating from the action consistent with the reaction function

ȳt(xt) at date t, and w is a strictly concave and twice differentiable function. For ex-

position purposes, the government payoffs before and after the private-sector action are

supposed to be the same: w(., .) = w̄(., .).

18While our main analysis is the strict repetition of the static game, we investigate in Appendix B

two situations in which the cost incurred by deviating from the commitment to a reaction function has

some intertemporal aspect: first, deviating from the reaction function implies welfare costs over multiple

periods ; second, the cost is itself history-dependent. In addition, in our repeated game, the government

announces its reaction function at each date. We discuss alternatives in which the government announces

all its reaction functions at date 0 in Appendix B.1.
19See Chari and Kehoe (1990) for the foundation of such games as anonymous games.
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Competitive outcome and Ramsey allocation. An allocation {(xt, yt)}∞t=0 is a competitive

outcome when yt ∈ D(xt) for any t ≥ 0 and:

{xt}∞t=0 = arg max
{ξt}∞t=0

∑
t≥0

βtu(ξt, xt, yt). (24)

Because the game is the repetition of a static game, an allocation {(xt, yt)}∞t=0 is a com-

petitive outcome if and only if (xt, yt) is a competitive outcome at any date t; that is,

yt ∈ D(xt) and

xt = arg max
ξt

u(ξt, xt, yt). (25)

We denote by C the set of competitive outcomes in a given period.

The Ramsey allocation is an allocation {(xRt , yRt )}t≥0 that solves the Ramsey problem:

{(xRt , yRt )}t≥0 = arg max
(xt,yt)∈C, t≥0

∑
t≥0

βtw(xt, yt), (26)

where we assume that w(xt, yt) = u(xt, xt, yt). In words, a Ramsey allocation is a compet-

itive outcome that reaches the government’s highest payoff. Given the repeated structure

of the game, the Ramsey allocation is the repetition of the static Ramsey allocation:

{(xRt , yRt )}t≥0 = {(xR, yR)}t≥0.

A Nash allocation is an allocation {(xNt , yNt )}t≥0 such that, at each date t, the allo-

cation (xNt , y
N
t ) is a Nash equilibrium outcome of the static game. We denote by Vd the

lowest payoff for the government among the set of Nash allocations. Notice that this

lowest payoff is achieved by the repeated worst static Nash equilibrium outcome, whose

per-period payoff is denoted by wd.

Strategies and equilibrium definition. For the government, a commitment strategy σ̄g =

{σ̄gt }t≥0 is a sequence that, at each date t ≥ 0, maps a history ht−1 to a reaction function

ȳt ∈ Y (X): σ̄gt : Ht−1 → Y (X), for each t ≥ 0.

For the aggregate of private agents, a strategy σh = {σht }t≥0 is a sequence that, at each

date t, maps a history {ht−1, ȳt} to an aggregate action xt ∈ X: σht : Ht−1 × Y (X)→ X,

for each t ≥ 0. For the government, a strategy σg = {σgt }t≥0 is a sequence that, at each

date, maps a history {ht−1, ȳt, xt} into an action yt ∈ D(X): σht : Ht−1 × Y (X) ×X →
D(X), for each t ≥ 0. Finally, we denote by V g

t (σ|(ht−1)) the payoff for the government

at date t implied by a history {ht−1} and a strategy profile σ.

We can now define an equilibrium. As in the static setting, we first define the contin-

uation of an equilibrium. At date t, after any history ht−1 and for all η̄ ∈ Y (X), the set

of continuation strategies (h, g) at date t is CE(ht−1, η̄) such that:

(i) (h (ht−1, η̄) , g (ht−1, η̄, h(ht−1, η̄))) is a competitive outcome;

(ii) for any x ∈ X and for any η ∈ D(x),

r(η̄, x, g (ht−1, η̄, x) , κ) + βV g
t+1(σ|(ht−1,η̄,x,g(ht−1,η̄,x))) ≥ r(η̄, x, η, κ) + βV g

t+1(σ|(ht−1,η̄,x,η)).

(27)
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Definition 5 (Subgame perfect equilibrium). A strategy profile σ = (σ̄g, σh, σg) is a sub-

game perfect equilibrium if, for any t ≥ 0 and for any history ht−1 ∈ Ht−1, the following

conditions are satisfied: for all η̄ ∈ Y (X) such that CE(ht−1, η̄) is not empty,

(i) (σh, σg) ∈ CE(ht−1, η̄);

(ii) denoting by ȳt = σ̄gt (ht−1), xt = σh(ht−1, ȳt), yt = σg(ht−1, ȳt, xt), x(η̄) = σh(ht−1, η̄)

and y(η̄) = σg(ht−1, η̄, x(η̄)),

V g
t (σ|(ht−1,ȳt,xt,yt)) ≥ V g

t (σ|(ht−1,η̄,x(η̄),y(η̄))). (28)

We say that {xt, yt}t≥0 is an equilibrium outcome of the strategy profile σ. We denote

by Θ∞(κ) the set of equilibrium outcomes for a given cost κ and by V (κ) the set of

equilibrium payoffs for the government.

Definition 5 extends Definition 2 to repeated games. The first condition requires that,

for any reaction function where this is possible, a continuation of an equilibrium forms.

The second condition requires that there does not exist a better reaction function than

the one selected.

Remark. Definition 5 coincides with a standard subgame perfect equilibrium in the ab-

sence of commitment ability (κ = 0) (as in Ljungqvist and Sargent, 2018). In this case,

the commitment to a reaction function is immaterial, and Θ∞(0) is simply the set of all

the subgame perfect equilibrium outcomes in the game with reaction functions.

Coordination problem. As for the static game, the government faces a coordination

problem when Θ(0) contains multiple equilibrium outcomes. An allocation {xt, yt}t≥0 is

implementable when Θ∞(κ) = {{xt, yt}t≥0}.
There are at least two situations in which multiple equilibria may emerge. First,

the static game admits multiple Nash outcomes. Second, dynamic incentives lead to

multiple equilibria, which are standard in repeated settings, at least when the discount

factor is sufficiently close to 1 and when the static game admits at least one inferior Nash

outcome.20

4.2 Equilibrium characterization and dynamic incentives

In this subsection, we first characterize the set of equilibrium payoffs for the govern-

ment. We then use these results to describe the incentives for the government to rule out

undesired private actions in a dynamic context.

20Such a Folk theorem result does not only imply that better outcomes can be sustained as equilibria

including the Ramsey one, it also implies that multiple equilibria emerge, as the repetitions of inferior

Nash outcomes are also equilibrium outcomes of the repeated game.
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The set of equilibrium payoffs. We follow the approach by Abreu et al. (1986, 1990) to

characterize the set of equilibrium payoffs. To this purpose, we define the worst payoff

that a competitive outcome can achieve:

Vm =
inf(x,y)∈C w(x, y)

1− β

and denote by (xm, ym) a competitive outcome that achieves the worst payoff Vm. Given

assumptions on the sets X and Y and on the function w, Vm > −∞.21

We can now characterize the set of equilibrium payoffs:

Lemma 6. The set of equilibrium payoffs for the government, V (κ), is a convex and com-

pact set; that is, there exist (Vworst(κ), Vbest(κ)) ∈ R2 such that V (κ) = [Vworst(κ), Vbest(κ)].

In addition, Vm ≤ Vworst(κ) ≤ Vbest(κ) ≤ VRamsey.

Proof. See Appendix D.4

Extending Ljungqvist and Sargent (2018) –based on Abreu et al. (1986, 1990)– to

our setting requires that we take into account the reaction function by the government

and the resulting discontinuity of payoffs. We show that, with these two additions, the

set of equilibrium payoffs is still compact—a key point, here, is that there is only one

discontinuity due to the welfare loss.

At first glance, the second part of the Lemma may seem trivial, as it requires only

that the worst equilibrium payoff, Vworst, exceeds the payoff of the repetition of the worst

competitive outcome (xm, ym). However, one has to remember that the per-period payoff

of the government can be lower than w(xm, ym), as it can also have to pay the cost κ so

that the worst per-period payoff can be as low as w(xm, ym)− κ.

Incentives to solve coordination problems. What are the resulting incentives for the

government to steer the private sector to play a given x̂ ∈ X instead of x 6= x̂? Again, as

in the static environment, the government has to play some action y ∈ Y(x) to prevent

the private sector from collectively playing x 6= x̂. In a static setting, this incentive is

simply the difference in the payoff of the government with respect to playing the ex-post

optimal action w(x, y)−w(x, y∗(x)). In a dynamic setting, these incentives do not depend

only on the current payoff of the government but also on the future consequences for the

government:

w(x, y) + βV g
t

(
σ|ht−1,ȳt,x,y

)
≥ w(x, y∗(x))− κ+ βV g

t

(
σ|ht−1,ȳt,x,y∗(x)

)
, (29)

where y∗(x) = arg maxỹ[w(x, ỹ)−κ+βV g
t

(
σ|ht−1,ȳt,x,ỹ

)
] and the reaction function is such

that ȳt(x) = y 6= y∗(x) if y∗(x) /∈ Y(x).

21Notice that Vm is potentially below the repetition of the worst static Nash outcome, as we do not

require (xm, ym) to be a static Nash outcome.
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The incentive for the government to stick to the action y is a function of the system

of expectations that are entailed in the strategy profile σ and, more precisely, a function

of how this strategy profile modifies future government payoffs—V g
t

(
σ|ht−1,ȳt,x,y

)
and

V g
t

(
σ|ht−1,ȳt,x,y∗(x)

)
. As σ should lead to an equilibrium, the continuation of σ as well

and, hence, the payoffs for the government can take any value in V (κ), as implied by

Lemma 6.

We can construct a strategy profile σ such that (29) rewrites:

κ ≥ w(x, y∗(x))− w(x, y)︸ ︷︷ ︸
Static incentive

+ β (Vbest(κ)− Vworst(κ))︸ ︷︷ ︸
Dynamic incentive

. (30)

That is, the strategy profile “punishes” the government for playing y and, instead, “re-

wards” the government for deviating from its reaction function. This condition is not only

necessary, but given that Vbest(κ)−Vworst(κ) is the maximum dynamic incentive, this con-

dition is also sufficient for the government to be always better off playing y. Taking (30)

over all the x different from the the desired one and noticing that Vbest(κ)−Vworst(κ) does

not depend on x, we obtain that

κ ≥ ρ+ β (Vbest(κ)− Vworst(κ)) . (31)

The commitment ability κ has to be large enough so that the government prefers to

stick to its commitment to a reaction function even at the cost of the private sector’s

reaction. As in the literature on repeated games (see Abreu, 1988), to consider the effects

of this private sector’s reaction, it is sufficient to look at the extremum values (Vbest(κ)

and Vworst(κ)). In particular, this means that the reaction of the private sector does not

“fit the crime”—it is not a function of the deviation itself. As a result, following through

on the reaction function comes at some sort of a fixed cost.

However, dynamic incentives are not exogenous objects, and they depend on equi-

librium objects—Vbest(κ) and Vworst(κ). These objects are themselves functions of what

the government can do in the future. Furthermore, the commitment ability κ enters the

inequality both on the left- and right-hand sides, so that the way the commitment ability

κ impacts the ability of the government to obtain a unique equilibrium is not straight-

forward. We investigate the feedback between dynamic incentives and the ability to rule

out equilibria in the next subsection.

4.3 The equilibrium set

Let us describe the set of equilibrium outcomes as a function of parameters κ and

β. We start with a situation in which the Ramsey allocation is an equilibrium outcome

only due to static incentives, formally, when κ ≥ κ̄. We then extend our results to the

case in which κ < κ̄. In what follows, for simplicity, we make the assumption that the

cost of controllability in the static version of the game (ρ) is zero to focus on the role of

reputation forces only.
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Case κ ≥ κ̄. In this case, the Ramsey allocation is an equilibrium outcome, so the best

payoff for the government is Vbest(κ) = w(xR, yR)/(1 − β).22 Looking at (31), the main

question regarding implementation is then about Vworst(κ).

But how do we handle (31) to think about multiplicity of equilibria, given that this

inequality includes equilibrium objects such as Vworst(κ)? In particular, if there is only

one equilibrium outcome, it should be that Vbest(κ) = Vworst(κ) and (31) boil down to

κ ≥ 0—an inequality that is trivially satisfied for any strictly positive commitment ability

κ.

But we should also make sure that multiple equilibrium outcomes do not arise. In this

case, Vworst(κ) < Vbest(κ). If this difference is sufficiently large so that (31) is not satis-

fied, the commitment ability κ is not sufficient for preventing the emergence of multiple

equilibrium outcomes. As we already know from Lemma 6, the worst payoff Vworst(κ) is

bounded below and the best payoff corresponds to the repetition of the Ramsey outcome.

Taken together, it is easy to conclude that with a sufficiently high commitment ability,

only one equilibrium exists.

The following proposition goes beyond the existence of such a commitment ability

threshold, but it also provides bounds to this threshold as a function of the model’s

parameters:

Proposition 7. There exists κI ∈ R+ such that the Ramsey allocation is implementable if

and only if κ ≥ max{κI , κ̄}. The threshold κI satisfies:

κI ∈
[

β

1− β
(w(xR, yR)− w(xd, yd));

β

1− β
(w(xR, yR)− w(xm, ym))

]
, (32)

where the allocation (xd, yd) is the worst Nash outcome of the static game and (xm, ym)

is the worst competitive outcome.

Otherwise, if κI > κ̄ and κ̄ ≤ κ < κI , the Ramsey allocation is an equilibrium outcome

but is not implementable.

Proof. See Appendix D.5

The commitment ability κ has to be larger than the threshold κI to prvent other

equilibria from arising. As we will explain below, κI measures the extent to which the

government can be incentivized by the private sector’s reactions not to stick to its past

commitments. When κ < κI , the government may be tempted to comply with the

private sector’s views and multiple equilibria may then arise. The threshold κI is, thus,

the analogue of the cost of controllability ρ in the repeated game.

Proposition 7 gives bounds to κI depending on β highlighting the role of reputation

forces. For the time being, let us give some intuition about how we obtain the bounds.

22As we show in Lemma D.10 in the Appendix, κ ≥ κ̄ is a sufficient condition for the Ramsey allocation

to be an equilibrium outcome.
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First, the threshold κI has to be larger than β/(1−β)(w(xR, yR)−w(xd, yd)). Other-

wise, we can construct an equilibrium outcome other than the Ramsey allocation. To this

purpose, we build a “stick-and-carrot” strategy profile where the initial stage is the worst

static Nash outcome in which the government is forced to renege on its reaction function

with a payoff w(xd, yd)− κ—the stick—and the continuation is the Ramsey allocation—

the carrot. We show that this strategy profile is an equilibrium. The payoff of this “stick

and carrot” strategy also provides an upper bound to Vworst(κ), as it corresponds to an

equilibrium payoff:

Vworst(κ) ≤ w(xd, yd)− κ+
β

1− β
w(xR, yR).

Second, the threshold κI has to be smaller than β/(1 − β)(w(xR, yR) − w(xm, ym)).

From Lemma 6, we obtain a lower bound Vworst(κ) ≥ Vm = 1/(1−β)w(xm, ym). Using this

upper bound for Vworst(κ), (31) thus implies that, when κ ≥ β/(1−β)
(
w(xR, yR)− w(xm, ym)

)
,

there exists only one equilibrium outcome. This latter condition is then sufficient for the

implementation of the Ramsey allocation when κ ≥ κ̄.

Finally, the existence of κI between these two values results from a monotonicity

argument.

Reputation forces make implementation more difficult. Compared with the static

setting, the condition for the implementation of the Ramsey outcome in a repeated setting

is stronger, as not only κ ≥ κ̄ but also κ > κI in order to prevent any other equilibrium

from forming: the coordination problem is more difficult to solve due to reputation forces.

This has two implications. First, in terms of commitment ability, the set in which the

government can implement the Ramsey allocation for a given κ ≥ κ̄ in the static game

is a superset of the same set in the repeated game version. Second, as the threshold κI

is bounded below by something that is increasing with the discount factor β, stronger

reputation forces (as captured by a higher β) may lead to more-difficult implementation.

In fact, in the limit where β → 1, implementation is impossible.

In the end, if reputation forces and commitment ability are substitutes for making

the Ramsey allocation an equilibrium outcome, as put forward by Proposition D.10,

Proposition 7 shows that reputation forces crowd out commitment ability—and so, they

are complements—when it comes to implementation.

Strictly positive commitment ability is usually necessary for implementation. The

condition κI ≥ β/(1 − β)(w(xR, yR) − w(xd, yd)) has direct implications for our exam-

ples. In all these models, the worst static Nash outcome usually differs from the Ramsey

outcome, implying that κI is strictly positive. As a result, in all these examples, imple-

mentation in a repeated setting requires a higher commitment ability.

Inflation bias. In this example, (xd, yd) is the unique static equilibrium outcome when

κ = 0. When y∗ > 0 and λ > 0, this outcome differs from the Ramsey outcome (xR, yR)

and w(xR, yR) > w(xd, yd).
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Bailouts. In this example, there exist multiple static Nash outcomes, including not

only the Ramsey one, but also the worst ones. Again, w(xR, yR) > w(xd, yd). In this

context, this means that repeated interactions may be a robust source of coordination

failures leading to bailouts.23

Capital taxation. In this example, the worst static Nash outcome is full taxation of

capital and no investment, which generically differs from the Ramsey outcome. Again,

w(xR, yR) > w(xd, yd).

Case κ < κ̄. On the one hand, if only one equilibrium outcome exists, it is necessarily the

best static outcome {(xκ, yκ)}t≥0. Indeed, the government cannot benefit from dynamic

incentives to sustain a better outcome, and it has to rely only on its commitment ability

as in the static setting and (xκ, yκ) is the best outcome that it can sustain in this case.

On the other hand, the existence of other equilibria depends on (31). But in contrast

with the case κ ≥ κ̄, both Vbest(κ) and Vworse(κ) may depend on κ, and whether there

exists only one equilibrium outcome is a matter of how β (Vbest(κ)− Vworse(κ)) increases

as a function of κ.

As this is a question that depends on both the exact model that we consider and its

parametrization, in Section 4.4, we develop an algorithm to compute the set of equilib-

rium payoffs. We then apply our method to the inflation bias model where we obtain

that Vbest(κ) − Vworse(κ) increases, but at a lower speed compared with κ, so that the

equilibrium outcome is also unique for sufficiently high values of κ but below κ̄.

4.4 Computing the equilibrium set and an application

In this subsection, we use a fixed point algorithm generalizing Ljungqvist and Sargent

(2018) to compute the set of equilibrium payoffs V when the government commits to

a reaction function (see Appendix C for the derivation of the algorithm). We focus on

the inflation bias example. Our main result is that the set of equilibrium outcomes is

non-monotonic with respect to commitment ability κ due to the presence of reputation

forces.

Figure 8 shows the set of equilibrium inflation (left panel) and payoffs, V , (right panel)

with respect to the reneging cost, κ. The figure has been computed in the case κ̄ > κI ,

in which case there exists only one equilibrium outcome when κ > κ̄.

Several observations emerge. First, when the commitment ability κ is low enough,

there are multiple equilibrium outcomes. With the calibration that we are using, the

Ramsey outcome is not an equilibrium outcome for low values of κ. By raising κ, the

best equilibrium outcome improves, but at the cost of decreasing the payoff in the worst

23Notice that Proposition 7 in Farhi and Tirole (2012) shows in an overlapping generation version of

their model that bailouts themselves can distort future investment decisions, leading to a form of fixed

cost of bailouts. Here, the fixed cost is about not bailing out and stems from trigger strategies.
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equilibrium outcome. Second, when the commitment ability exceeds some threshold κ,24

there is only one equilibrium outcome that coincides with the unique static equilibrium

outcome (xκ, yκ), but the associated payoff is lower than the one with slightly lower

commitment ability. Third, when κ is large enough, the Ramsey allocation is the unique

equilibrium outcome.
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Figure 8: Inflation and welfare as a function of the commitment ability κ
These are the set of equilibrium inflation rates (left-hand panel) and welfare (right-hand panel) as a function of the

commitment ability κ. In red, we plot the (unique) static Nash outcome; in blue (dashed line), the best static outcome

(xκ, yκ); in yellow, the Ramsey outcome. The vertical black line is the value κ = κI such that there exists a unique

equilibrium outcome for any greater commitment ability. The black plain line is the best equilibrium outcome and the grey

is the worst equilibrium outcome.

Notice that the set of equilibrium outcomes is non-monotonic as a function of com-

mitment ability: more precisely, the boundaries of V , w̄ and w are not monotonic with

respect to κ. In particular, more commitment ability does not necessarily reduce the set

of equilibrium outcomes, as we observed that sometimes the equilibrium set expands with

κ. We also notice that more commitment ability does not necessarily mean that the best

payoff for the government increases because, when the set of equilibrium payoffs collapses

to a singleton, wκ, the collapse can be accompanied by a reduction of welfare compared

to the best equilibrium payoff with a slightly lower κ.

In the end, while it is always optimal to have a high degree of commitment ability

(here, κ > max(κI , κ̄)), it is not clear that a higher degree of commitment ability always

improves welfare.

The forces behind the non-monotonicity. Two main economic forces explain the non-

monotonicity of the set of equilibrium payoffs: on the one hand, there is the direct effect

of commitment ability as in the static environment and, on the other hand, the indirect

24Note that this threshold may not be κI , which concerns the implementation of the Ramsey outcome.
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effect through reputation forces.

First, as in the static environment, a higher commitment ability κ allows the govern-

ment to sustain a better equilibrium outcome, for given reputation forces (fix future value

functions). This direct effect increases both Vbest(κ) and Vworst(κ).

Second, by modifying the set of equilibrium payoffs, a change in κ also modifies

reputation forces. These reputation forces, which affect government’s incentives through

future payoffs, are a function of the difference between the best equilibrium payoff Vbest

and the worst equilibrium payoff Vworst(κ). In our case, this difference is first increasing

as a function of the commitment ability κ, as can be observed in Figure 9. Increasing

reputation forces can sustain better equilibrium outcomes (i.e., increases Vbest(κ)). It can

also sustain worst equilibrium outcomes (lower Vworst(κ)): future payoffs can be used

as a carrot to push the government to comply with a bad current outcome—as in the

stick-and-carrot strategy.
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Figure 9: Reputation forces (Vbest − Vworst) as a function of the commitment ability

This graph plots in red the difference between the payoff associated with the best equilibrium outcome and with the worst

equilibrium outcome discounted by β as a function of the commitment ability κ; and in blue the commitment ability κ

itself. The grey area corresponds to values of the commitment ability κ consistent with multiple equilibrium outcomes and,

in white, to values consistent with a unique equilibrium outcome.

When κ is low enough, the indirect effect through reputation forces dominates: Vbest(κ)−
Vworst(κ) increases, thus leading Vbest(κ) to increase and Vworst(κ) to decrease as a function

of κ.

However, in our example, Vbest(κ) − Vworst(κ) increases at a slower pace than κ, as

illustrated by Figure 9, so there exists a point where κ ≥ β (Vbest(κ)− Vworst(κ)). This

point is κI , according to Proposition 7, and it is such that (31) is satisfied for any greater

κ ≥ κI and only one equilibrium outcome exists (ρ = 0 in this example, as emphasized in

Section 2): the commitment ability through κ is sufficient to overcome reputation forces

to push the government to stick to its commitments. In turn, that only one equilibrium
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outcome exists leads to Vbest(κ) = Vworst(κ). As reputation forces disappear, the (unique)

equilibrium outcome corresponds to the static outcome (xκ, yκ) and is increasing as a

function of the commitment ability, as in the static environment.

5 Conclusion
In this paper, we have investigated the ability of a government to implement a unique

equilibrium outcome when its commitment ability is limited. Our objective was to find

the main constraints on such an ability that would require a large commitment ability. In

particular, we have identified that frictions to rational expectations/full information may

make implementation more difficult by making the private sector’s actions less sensitive to

public decisions. Similarly repeated interactions between the private sector and the gov-

ernment may also lead to the same outcome by altering the incentives of the government

to follow through on its commitments.
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A Extensions – static game – For online publication

In this Appendix, we show auxiliary results connected to the static game studied in Section

2.

A.1 Reneging in equilibrium?

An important but simple question is whether the government deviates from its reaction

function in equilibrium. An implication from Proposition 1 is that such deviation does not

occur when there is implementation—that is, there exists a unique equilibrium:

Proposition A.1 (The government does what it promised). Suppose that the best equilibrium out-

come (xκ, yκ) is implementable. Then, in any equilibrium (ȳ, σh, σg), σg(ȳ, σh(ȳ)) = ȳ(σh(ȳ)).

Proof. Let us assume that there exists a unique equilibrium outcome. From Proposition 1, this

equilibrium outcome is necessarily (xκ, yκ). Let us suppose that there exists an equilibrium

such that ȳ(xκ) 6= yκ with xκ = σh(ȳ) and yκ = σg(ȳ, xκ). The government may improve its

ex ante payoff by selecting the same reaction function but with ȳ(xκ) = yκ. As the equilibrium

outcome is always (xκ, yκ), the government’s payoff shifts from w(xκ, yκ)−κ to w(xκ, yκ), which

is strictly better.

The intuition behind this result is that the government always prefers to opt for a reaction

function that saves on the cost κ. An important reminder is that a unique equilibrium outcome

does not necessarily imply that the equilibrium is unique, as multiple strategies, implying mul-

tiple off-equilibrium actions, may implement this outcome. However, Proposition A.1 implies

that equilibrium actions are the same across all equilibria.

Let us also contrast such a result with what can happen when multiple equilibria arise. In

such a case, the expectation of an inferior equilibrium outcome may lead the government to

deviate and pay the cost κ. More precisely, the commitment to a suboptimal reaction function

may be used as a coordination device on the best equilibrium outcome and any change in such

a commitment may lead the private sector to coordinate on the inferior equilibrium: when the

cost κ is sufficiently low, the government prefers to pay this cost and to benefit from the best

equilibrium outcome rather than not paying the cost and suffering from the inferior equilibrium

outcome.

A.2 More general welfare cost functions.

In this paragraph, we extend the results of Proposition 1 to reneging cost of the form κ̄(y, y′)

where y′ is the actual action played by the government and y is the action that the government

committed to. The only assumption that we make on this function is that κ̄(y, y) = 0 for

all feasible y. With this notation, our assumption of a fixed welfare cost can be written as

κ̄(y, y′) = κ1y′=y.
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As with a fixed welfare cost, we define the best allocation that can be sustained by the

function κ̄ as (xκ̄, yκ̄) ∈ C solving:

max
(x,y)∈C

w̄(x, y) (33)

s.t. w(x, y) ≥ w(x, η)− κ̄(y, η), ∀η ∈ D(x). (34)

Proposition A.2. Under Assumption 2, the best equilibrium outcome (xκ̄, yκ̄) is implementable

when

sup
x6=xκ̄

inf
y∈Y(x)

[w(x, y∗(x))− w(x, y)− κ̄(y, y∗(x))] ≤ 0.

Proof. The proof closely follows the proof of Proposition 1.

In particular, note that, when κ̄ and w are continuous and differentiable with respect to the

first and the second variable respectively, a sufficient condition for Proposition A.2 to be satisfied

is that: (i) the second item of Proposition 3 is satisfied and in particular u13(x, x, y) 6= 0 in any

Nash outcome (x, y); (ii) for any x 6= xκ̄ such that x belongs to at least one competitive outcome,

the partial derivative ∂1κ̄(y∗(x), y∗(x)) is greater than than the partial derivative ∂2w(x, y∗(x));

that is, the marginal cost of deviating from the reaction function is larger than the marginal

gain around the ex-post best response. As we assume that Nash outcomes are all interior, this

second condition boils down to ∂1κ̄(y∗(x), y∗(x)) 6= 0: the marginal cost of deviating should

simply be strictly positive.

A.3 Bounded rationality

In this subsection, we study a simple departure from full rationality in the static game de-

scribed in Section 2. Whereas there is a unique way to model rationality, there are multiple ways

to depart from it. Here we simply assume that it is costly for agents to process information and

select their individual best response—we borrow such costs from Reis (2006), who introduced

them to model inattentive producers, among others. We show that such a deviation from full

rationality exacerbates the coordination problem by leading to more equilibria and makes the

coordination problem harder to solve, individual actions being more costly to control.

A.3.1 Model

The model is similar to the static model described in Section 2, except that private agents

are not fully rational. Private agents pay a cost θ to maximize their utility and take their best

action. Whether to pay this cost then depends on their prior beliefs about the gain to maximize.

When agents do not pay this cost, they play an action taken from their prior beliefs about the

right action to play.
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Private sector. Let us denote by ∆(x, y) the expected gain to maximize over its individual

action ξ rather than playing an alternative action (defined below) by an agent expecting the

allocation to be (x, y). The function ∆ maps an aggregate action x, a policy action y to a

positive real number.25

Consider, then, the optimal decision of an individual agent for a given (expected) aggregate

action x ∈ X and (expected) policy action y ∈ D(x). Two situations may arise.

If ∆(x, y) ≥ θ, the private agent selects ξ ∈ X so as to maximize u(ξ, x, y), as in the

competitive outcome under rational expectations:

ξ∗ = arg max
ξ∈X

[u(ξ, x, y)− θ].

Notice that the cognitive cost θ, being separable, does not alter the optimal choice when the

agent chooses to select the optimal action. Otherwise, when

∆(x, y) < θ, (35)

the private agent plays its prior belief Ξ(x, y) about what constitutes the optimal action given

aggregate action, x and policy action y ∈ D(x).

Definition A.1 (Competitive outcome under bounded rationality). Given ∆ and Ξ, an allocation

(x, y) is a competitive outcome under bounded rationality if:

x ∈ X, y ∈ D(x),Ξ(x, y) = x and ∆(x, y) < θ; (36)

or (x, y) ∈ C and ∆(x, y) ≥ θ. (37)

We denote this set of competitive outcomes by Cθ(∆,Ξ).

Equilibrium definition. Given a belief function ∆, the definition of an equilibrium is un-

changed and described by Definition 2 where the definition of a competitive outcome is modified

along the lines described above.

Four remarks are in order. First, when a private agent chooses to select the optimal action,

it chooses the optimal unconstrained action, as in Section 2. The limits to rationality do not

play any role in this case. Second, the agent computes the expected gain using the strategy

profile; that is, y = σg(ȳ, x). Private agents perfectly understand the future policy action,

but can prefer not paying attention to it if they perceive that the utility gain from computing

and choosing the optimal action is too low. Third, the equilibrium set depends on both belief

functions ∆ and Ξ. Fourth, we do not micro-found the belief functions here; hence, they are

a priori given and not equilibrium objects. For instance, these functions can be arbitrarily far

from the true optimizing gain. One extreme case is when the perceived gain is always zero

(∆ = 0). In such a case, the private agents always play their a priori action ξ = Ξ(x, y). Still, a

reaction function can matter through the policy y, as the reaction function ȳ modifies ex-post

incentives of the government. In an even more extreme case, when the private agents always

comply with the aggregate if they choose their a priori action (∆(x, y) = x); then, any aggregate

action x ∈ X is part of an equilibrium outcome.

25Note that we implicitly assume here that agents have symmetric prior beliefs.
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Prior beliefs. The set of equilibria depends on prior beliefs ∆ and Ξ. In what follows, we

study a special case in which these functions satisfy:

Assumption A.1 (Prior functions). For any x ∈ X and y ∈ D(x), prior functions ∆ and Ξ

satisfy:

∆(x, y) = max
ξ∈X

u(ξ, x, y)− u(x, x, y) and Ξ(x, y) = x. (38)

The restriction on ∆ simply means that private agents perfectly anticipate the gain to

optimize: the limit to rationality relies only on finding the action that actually maximizes

the utility function. The restriction on Ξ means that, when private agents choose to follow

their prior belief about the best action, agents play their expected aggregate action x. Our

understanding is that there is no loss of generality to focus on this particular Ξ function: with

alternative functions, one would have to find fixed points of Ξ(ξ, y) = ξ for each potential y.

Furthermore, private agents may also anticipe the gain to optimize with some noise, which, if

they are risk-averse, would be equivalent to a lower perceived gain to optimize.

Under Assumption A.1, the set of competitive outcomes Cθ is a superset of C converging to

C when θ tends to 0 and can be rewritten as the set of allocations (x, y) such that:

y ∈ D(x) and u(x, x, y) ≥ max
ξ∈X

u(ξ, x, y)− θ.

Best constrained outcome and Ramsey outcome. As under full rationality, let us first

define (xκθ , y
κ
θ ) ∈ Cθ as the best competitive outcome such that the government has no ex-post

incentive to deviate. We can also define the Ramsey allocation (xRθ , y
R
θ ), as the best competitive

outcome.

Notice that these two allocations may differ from the ones under full rationality and lead to

higher ex-ante government payoffs, as the cost θ extends the set of competitive outcomes.

A.3.2 Cost of controllability

Here, we investigate the equilibrium set under limited commitment ability (κ < ∞). As

under full rationality, the critical measure is the cost of controllability of private actions ρ (see

Proposition 1). With the deviation from full rationality that we consider, this cost depends on

θ:

ρθ = sup
x∈X

inf
y∈Yθ(x)

(w(x, y∗(x))− w(x, y)) , (39)

where y∗(x) = arg max
y∈D(x)

w(x, y), (40)

and Yθ(x) = {y ∈ D(x)|∃ξ ∈ X, u(ξ, x, y) > u(x, x, y) + θ}. (41)

The only difference with respect to ρ is that y has to be selected in Yθ(x), which depends on θ

as it can be observed in (41). To move individual actions away from x, a policy decision should

lead to a utility gain larger than θ.
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Proposition A.3. The cost of controllability ρθ increases with θ and ρθ > 0 when θ > 0.

Proof. The proof closely follows the proof of Proposition 1.

That ρθ is increasing in θ results from (i) the fact that Cθ expands with θ and, (ii) the fact

for a given θ and for each (x, y) ∈ Cθ, Yθ′(x) ⊂ Yθ(x) if θ′ > θ.

Finally, for θ > 0, ρθ > 0 results from the fact that it is always costly for the government

to deter a Nash outcome when θ > 0 as explained after the Proposition in the main text. To

see that, take a Nash outcome (x, y). To deter such an action x, the government should play

an action y′ ∈ D(x) such that maxξ∈X u(ξ, x, y′) > u(x, x, y′) + θ. As u is continuous it implies

that the government has to play an action far away from y = y∗(x) leading to cost for the

government, w being strictly concave. Notice that, if there is a a unique Nash outcome that

coincides with the best equilibrium outcome, one can redo the same reasoning with an allocation

very close to the Nash outcome and show that the government necessarily needs to incur a cost

to rule out such an allocation. Therefore ρθ > 0 for θ > 0.

Given Assumption A.1, the cost of controllability is the one under full rationality when

θ = 0 (ρ0 = ρ). The larger the departure from full rationality (θ), the higher the commitment

ability (ρθ) required to implement a unique outcome. Finally, this proposition shows that

when rationality is bounded (θ > 0), the cost of controllability cannot be zero (ρθ > 0). The

government needs some commitment ability to implement a unique equilibrium outcome as it

needs to commit to costly policy action ex-post.

The intuition of the proposition is as follows. Suppose that (x, y) is a Nash outcome that the

government would like to rule out through the commitment to its reaction function. To deter

the action x, the government should play an action y′ ∈ D(x) such that maxξ∈X u(ξ, x, y′) >

u(x, x, y′)+θ. By continuity of u, the action that the government has to commit to deter private

agents from playing the action x is necessarily far away from y = y∗(x) entailing cost for the

government, w being strictly concave. Compared to Proposition 3, this situation corresponds

to u13 = 0 in a neighborhood of Nash outcomes.

Remark. Under full commitment ability, when κ = ∞, implementation requires that Yθ(x) is

non-empty for any x ∈ X. This is the same condition as under full rationality (see Corollary

2).

We now apply Proposition A.3 to the inflation bias problem, which features a coordination

problem with bounded rationality but not with full rationality.

Application to the inflation bias problem. Let us show how the cost θ modifies the inflation

bias problem. First, households do not pay the cost θ when the inflation rate π and the aggregate

expectation πe satisfy:

(πe − π)2 ≤ θ

49



– that is, when πe is between π −
√
θ and π +

√
θ. Otherwise, households pay the cost θ and

ξ = π so that πe = π as well. Therefore, for a given θ, the set of competitive outcomes Cθ is{
(πe, π), π ∈ [π, π̄], πe ∈ [max{π −

√
θ, π},min{π̄, π +

√
θ}]
}
.

Second, the cost θ leads to a coordination problem under discretion. When κ = 0, the best

response for government to πe, π∗(πe) solves:

π∗(πe) = arg max
π∈[π,π̄]

− (λ(π − πe)− y∗)2 − α(π)2.

When interior, the difference between π∗(πe) and πe satisfies:

π∗(πe)− πe =
λy∗ − απe

α+ λ2
,

which, in addition to the optimality of private agents, leads to the following set of equilibrium

outcomes:26

πe ∈
[
−θα+ λ2

α
+
λ

α
y∗; θ

α+ λ2

α
+
λ

α
y∗
]

and π =
λy∗ + λ2πe

α+ λ2
. (42)

Interestingly, when θ is large enough, the Ramsey allocation achieves the highest possible welfare

with π = 0 and πe = −y∗/λ and is an equilibrium outcome under discretion. In such a case,

there is no time-consistency problem. In other words, the distortion due to the cost θ may

help the government to achieve the highest possible welfare which is unreachable under rational

expectations.

Let us turn to the implementation problem under limited commitment ability (κ > 0). For

a given competitive outcome (πe, π), the government’s minimal action to push agents to change

their decision is π′, such that π′ < πe −
√
θ or π′ > πe +

√
θ, which defines:

Yθ(πe) =
{
π|(π − πe)2 > θ

}
.

On the other hand, given private sector expectation πe and a cost κ, the government does

not deviate from its commitment π̄(πe) whenever π = π̄(πe) satisfies:

− (λ(π − πe)− y∗)2 − α(π)2 + κ ≥ − (λ(π∗(πe)− πe)− y∗)2 − α(π∗(πe))2. (43)

The left-hand panel of Figure 10 plots the set of competitive outcomes as defined by (42) in

orange; the borders of the area where the government does not deviate from commitments as

defined by (43) are the blue lines; and a candidate reaction function is in black. In this graph,

the intersection between the set of competitive outcomes and the set of allocations implied by

the reaction function constitutes the set of equilibrium outcomes (the star at the bottom left and

the segment). Each allocation of the set of equilibrium outcomes is indexed by a level of expected

inflation, which is a particular private-sector strategy, σh. Increasing the commitment ability

κ moves the star to the bottom left, thereby lowering equilibrium inflation and contracting the

26We assume here that the boundaries π and π̄ are sufficiently large so that they do not constrain the

equilibrium outcomes.
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Figure 10: Best responses and equilibrium inflation as a function of the commitment

ability κ.
The left-hand panel plots realized inflation—which is the action of the government y—as a function of expected inflation—

which is the action of the private sector. In orange, we plot the set of competitive outcomes; in blue, the ex post optimal

action y∗(x); in green, the highest and lowest time-consistent inflation rates; in black, a time-consistent reaction function

ȳ that accepts (xκ, yκ) as an equilibrium outcome—we plot this reaction function whenever it is different from y∗(x). The

intersection between the reaction function and the competitive outcome describes the set of equilibrium outcomes. The

right-hand panel plots the set of equilibrium inflation rates as a function of the commitment ability (κ). Increasing κ moves

the highest inflation rate up and the lowest rate down so that ȳ 6= y∗(x) for a larger set of values of x in the orange area.

segment, thus shrinking the set of equilibrium inflation rates belonging to the segment in the

interior of the competitive outcome set.

The right-hand panel of Figure 10 plots the equilibrium set as a function of κ. It is the

union of two subsets. First, the blue curve stands for the best equilibrium outcome (xκ, yκ)

(the star in the left-hand panel) that converges to the Ramsey level of inflation π = 0 (and

πe = −y∗/λ). The grey area depicts a second subset of equilibrium outcomes when commitment

ability is sufficiently low (the segment in the left-hand panel). It is a subset of competitive

outcomes around the Nash allocation under full rationality (dashed black line). This second set

monotonously shrinks with κ and completely disappears when κ is sufficiently large—when the

government can deter private agents from expecting the Nash inflation level.

B Extensions – Repeated game – For online publication

B.1 Date-0 strategy

An alternative presentation of the repeated game would be that the government announces

at date 0 a collection of reaction functions ȳ(ht, x) for any history ht. However, there are

two possibilities regarding this initial strategy of the government, depending on whether the

government can change this strategy in the future.

Reoptimizing over the strategy. A first possibility is that the government announces all its

reaction function at date-0 but can deviate from them in the future. In this case, we are back
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to the analysis in the core of the text, in which the government announces its reaction function

sequentially.

Sticking to the initial strategy. The second possibility is that the government announces all

its reaction functions—after any history of actions. In this case, the government then commits

not to renege on reaction functions, even though its actions can ex post deviate from what is

announced by the reaction function. In this case, we show that implementation of the Ramsey

outcome at date 0 can more easily obtain: on the one hand, the government can commit to future

reaction functions that create additional cost of deviations to its initial deviations but it can

also strategically keep some reputation forces to make it easier to sustain the Ramsey outcome.

This result stems from the commitment technology on reaction functions. This commitment on

reaction functions also creates an asymmetry between date 0 and the following periods. That

being said, the full analysis of this game remains beyond the scope of this paper.

Strategies and equilibrium definition. The main difference when the government is

unable to reoptimize over its strategy over reaction function σ̄g is that the history that agents

take into account only contains the actions played by the private agents xt and the action played

by the government yt, so that ht is defined recursively by ht = {ht−1, xt, yt}. Again, Ht denotes

the set of potential histories up to period t.

Let us denote by R(X) ⊆ Y (X) the subset of of Y (X) such that ȳ ∈ R(X) if and only if

{x, (x, ȳ(x)} ∈ CE} is not empty—that is the set of reaction functions consistent with compet-

itive equilibria. We denote by R the set of announcement strategies where reaction functions

are selected from R(X).

For the aggregate of private agents, a strategy σh = {σht }t≥0 is a sequence that, at each

date t, maps a announcement strategy of the government and a history {ht−1} to an aggregate

action xt ∈ X: σht : R×Ht−1 → X, for each t ≥ 0.

The government’s strategy σg = {σgt }t≥0 is a sequence that, at each date, maps a history

{ht−1, , xt} and an announcement strategy into an action yt ∈ D(X): σht : R×Ht−1×X → D(X),

for each t ≥ 0. We denote by V g
t (σ|(ht−1)) the payoff for the government at date t implied by

a history {ht−1} and a strategy profile σ. The strategy profile is the collection of strategies{
σ̄g, σh, σg

}
.

We can now define an equilibrium.

Definition B.1. A strategy profile σ = (σ̄g, σh, σg) is an equilibrium if, for any t ≥ 0 and for any

history ht−1 ∈ Ht−1, the following conditions are satisfied:

For all η ∈ R, for all period t and histories ht−1

(i) (σh(η, ht−1), σg(η, ht−1) is a competitive equilibrium,

(ii) for all y ∈ D(σh(η, ht−1)),

r(η, σh(η, ht−1), σg(η, ht−1), κ) + βV g
t+1(σ|ht−1,σh(η,ht−1),σg(η,ht−1)) ≥ · · ·

· · · r(η, σh(η, ht−1), y, κ) + βV g
t+1(σ|ht−1,σh(η,ht−1),y)
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σ̄g is such that: for any η ∈ R, σ̃ = {η, σg, σh} is such that:

V g
0 (σ|h0) ≥ V g

0 (σ̃|h0).

Equilibrium set as a function of κ. Let us investigate how the equilibrium set evolves

as a function of κ. To this end, let us look at the incentives for the government to stick to its

reaction function ȳ in any given period. For a given xt, the government sticks to ȳ(xt) whenever:

u(xt, ȳ(xt)) + βV g
t ({ht−1, xt, ȳ(xt)}) ≥ max

y
u(x, y)− κ+ V g

t ({ht−1, xt, y}) . (44)

Under the following assumption:

Assumption B.1. For any x ∈ X, there exists y ∈ D(x) so that u(x, y) is arbitrarily low.

we can establish the following result

Proposition B.1. For κ ≥ κI,0, the government can implement a unique equilibrium outcome.

Whenever maxy u(xR, yR) − u(xR, y) ≤ κ̄0/(1 − β), and κ ≤ κI,0, the government uniquely

implements the Ramsey outcome at date 0.

We have κI,0 < κI and κ̄0 < κ̄.

Before going to the proof, several comments are in order. First, κI,0 and κ̄0 are lower than

their counterparts without commitment on reaction functions as the government can create

deviation costs in the future through contingent future reaction functions. Second, it can also

decide to keep multiple equilibria in the future, in which case κ̄0 is even lower. Indeed multiple

equilibria in the future (starting at date 1) does not mean multiple equilibria at date 0 and the

government is, here, only concerned by its date-0 welfare.

Proof. Let us first show the existence of κ̄. First, we have:

V g
t ({ht−1, xt, ȳ(xt)}) ≥ Vworst(0)− κ

1− β

However, as the government is always better off announcing the policy leading to Vworst,

V g
t ({ht−1, xt, ȳ(xt)}) ≥ Vworst(0). On the other hand, after deviating from its reaction function,

as the government can always announce a sequence of reactions functions so that it is better off

deviating at each date t:

V g
t ({ht−1, xt, y}) ≤ Vbest −

κ

1− β
.

Plugging these inequalities into (44), we find

u(xt, ȳ(xt))− u(xt, y
∗(xt)) ≥ βVbest −

κ

1− β
− βVworst

As in the benchmark case, ȳ(xt) can be selected arbitrarily close to y∗(xt) and:

κ

1− β
≥ β (Vbest(0)− Vworst(0))
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The existence of κI,0 stems from this inequality. Notice that κI,0 < κI as defined in the main

text.

Whether the government can sustain the Ramsey outcome at date 0 amounts to the following

equation:

u(xR, yR) + βV ≥ u(xR, y)− κ/(1− β) + βVworst

where V is a continuation payoff in [Vworst, Vbest]. On the right hand side, the government does

not only deviate from its reaction function at date 0 but commits to deviate at any further date

by announcing contingent reaction functions.

B.2 Alternative forms of costs

In this Appendix, we investigate two potential extensions of our repeated setting in which

the cost has some intertemporal aspects. In the first extension, the government incurs a cost

over multiple periods if it deviates from its reaction function. We show that this situation is,

in fact, analogous to a repeated game setting with only contemporaneous welfare cost. In the

second extension, the cost of deviation may depend on the past. In this latter situation, we show

that if the cost of deviation is sufficiently high, the government implements a unique equilibrium

outcome.

That costs of deviations may span over multiple periods and/or depend on past history are

natural features when thinking about political costs that may take time to unfold or credibility

losses –e.g., due to the revelation of the type of policymaker in case of a deviation.

Multi-period costs. Let us first introduce multi-period costs: when the government deviates

from its reaction function in period t, the resulting cost does not accrue only in the current period

but over multiple periods—this may entail the situation in which all the cost of deviation stems

only from future periods.

We consider the sequence {κt}t≥0. The payoff of the government given a sequence {ȳt, xt, yt}t≥τ :

V g
τ ({ȳt, xt, yt}t≥τ ) =

∑
t≥τ

βt

w(xt, yt)− 1ȳt(xt)6=yt
∑
k≥0

βkκk

 .

At each period t following a private-sector action x, if the actual action played yt differs from

the reaction function ȳt(xt), the government faces a sequence of costs κt. More precisely, it

incurs a cost κ0 at date t, κ1 at date t+ 1 and so on. The date-t discounted sum of these costs

is
∑

k≥0 β
kκk and the previous repeated game is a special case where κk = 0 for any k > 0.

This game can be equivalently recasted as a repeated game with a cost κ =
∑

k≥0 β
kκk with

the payoff of the government being:

V g
τ ({ȳt, xt, yt}t≥τ ) =

∑
t≥τ

βt
(
w(xt, yt)− 1ȳt(xt) 6=ytκ

)
=
∑
t≥τ

βtr(ȳt, xt, yt, κ),

with r(ȳt, xt, yt, κ) = w(xt, yt)− κ1ȳt(xt)6=yt .
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Therefore, we can apply the results obtained with contemporaneous costs to repeated set-

tings with a sequence of costs. What eventually matters is the present value of all future costs

incurred following one deviation κ.

History-dependent costs. Commitment ability could also depend on the past and especially

on past policy decisions. For simplicity, we focus on contemporaneous costs only. At time t,

after a history ht−1, deviating from the reaction function leads to a cost κt(ht−1) ≥ 0. For any

t ≥ 0, the cost function κt(.) maps a history of events until date t to a positive real number.

Using this cost function, we can redefine the payoff after a history ht−1 by:∑
k≥t

r(ȳk, xk, yk, κk(hk−1)).

In this dynamic environment and under some conditions on the cost function κt(.), we still

obtain sufficient conditions for implementation:

Proposition B.2. Suppose that for any t ≥ 0, κt(.) takes value in a bounded set [κ, κ] with κ <∞.

As a result, if κ is large enough, there exists a unique equilibrium outcome.

Proof. Equilibrium payoffs are bounded. Thus, we can follow the same reasoning as in the

repeated game to observe that, as, after any history ht−1, κ(ht−1) > κ, we have κ(ht−1) ≥
β (Vmax − Vmin), with Vmax the upper bound of the set of payoffs. Vmin and Vmax exist as the set

of payoff is bounded, between 1/(1−β)
(
min(x,y)∈C w(x, y)− κ

)
and 1/(1−β) max(x,y)∈C w(x, y).

C A method to obtain the set of equilibrium payoffs – Re-

peated game – For online publication

Let us start with a superset of equilibrium payoffs; for instance: W0 = [w0, w̄0], with

w0 = V m and w̄0 = V R = u(xR, yR)/(1 − β). Using W0, we can compute the boundaries of

W1 = B(W0), where B is the mapping defined in Appendix 6 and, afterwards, iterate up to the

convergence toward W = B(W ) = V . Proposition C.1 provides the way to compute wn+1 and

w̄n+1 given wn and w̄n.

Proposition C.1. Given W = [w, w̄], W ′ = B(W ) = [w′, w̄′] where w′ and w̄′ solve:

w̄′ = max
(x,y)∈C

u(x, y) + βw̄, (45)

s.t. u(x, y) + βw̄ ≥ u(x, y∗(x))− κ+ βw. (46)

u(x, y) + βw̄ ≥ u(xκ−β(w̄−w), yκ−β(w̄−w)) + βw, (47)

w′ = min
(x,y)∈C,w∈[w,w̄]

u(x, y) + βw, (48)

s.t. u(x, y) + βw ≥ u(x, y∗(x))− κ+ βw, (49)

u(x, y) + βw ≥ u(xκ−β(w̄−w), yκ−β(w̄−w)) + βw. (50)
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Proof. See appendix D.6.

Note that the allocation (xκ−β(w̄−w), yκ−β(w̄−w)) is the competitive outcome that achieves the

highest welfare and is compatible with a reaction function η̄ as defined in item (ii) of Definition

D.1. Under the assumption of controllability, we can construct a η̄ ∈ Y (X) as in item (ii) that

is only consistent with this competitive outcome. Therefore, the competitive outcome that is a

candidate for the worst and the best equilibrium payoffs should lead to a higher welfare than

the competitive outcome (xκ−β(w̄−w), yκ−β(w̄−w)).

While the worst payoff w′ results from multiple forces, the best payoff w̄′ is easier to compute.

Take the maximization problem (46) subject to (46). The solution is

u(xκ−β(w̄−w), yκ−β(w̄−w)) + βw̄,

which satisfies (47). Therefore w′ = u(xκ−β(w̄−w), yκ−β(w̄−w)) + βw̄ and the second constraint

(47) is slack. For a given w̄ − w, the upper bound of W ′ thus increases with κ.

D Proofs – For online publication

D.1 Proof of Proposition 1.

Points (i) and (iii). Let us start by showing that the set of equilibrium payoffs is a compact

set, that (xκ, yκ) is an equilibrium outcome that achieves the best equilibrium payoff and that

both the worst and the best payoffs are weakly increasing with κ.

To this purpose, let us show the following lemma. Let Sκ = {(x, y) ∈ C,w(x, y∗(x))− w(x, y) ≤ κ}
be the set of competitive outcomes that can be ex-post sustained by the government if the re-

action function is such that ȳ(x) = y. Let Sxκ = {x ∈ X,∃y ∈ D(x), (x, y) ∈ Sκ} be the set of

private-sector actions that belong to at least one allocation in Sκ.

Lemma D.1. An allocation (x, y) is an equilibrium outcome if and only if

(i) (x, y) ∈ C,

(ii) w̄(x, y) ≥ minx′∈Sxκ maxy′|(x′,y′)∈Sκ w̄(x′, y′).

Proof. Suppose that (x, y) is an equilibrium outcome. This means that there exists σ =

(ȳ, σg, σh) such that σ leads to (x, y). By definition, (x, y) ∈ C and w(x, y∗(x)) − w(x, y) ≤ κ.

As a result, (x, y) ∈ Sκ.

Let us show that condition (ii) is also satisfied. Indeed, suppose it is not. Without loss of

generality, we can focus on ȳ(x) = y. In this case, for all x′ ∈ Sxκ , there exists y′ such that

(x′, y′) ∈ Sκ, such that w̄(x′, y′) > w̄(x, y). Using these values of x′ and y′, we can build a

reaction function η̄ such that η̄(x′) = y′ on Sxκ—outside this set, we can take η̄ in an arbitrary

manner as no equilibrium can form. The strategy profile σ should define the actions after η̄:

σh(η̄) = x′ and σg(η̄, σg(η̄)) = y′.
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As w̄(x, y) is the payoff associated with σ, that is r̄(ȳ, x, y) and the payoff associated with

η̄ is r̄(η̄, x′, y′) = w̄(x′, y′) (notice that we have constructed η̄ so that η̄(x′) = y′), which implies

that there exists a reaction function η̄ that allows to do better than ȳ, a contradiction.

Conversely, suppose that (x, y) satisfies conditions (i) and (ii) from Lemma D.1. Let us show

that it is an equilibrium outcome. Let us consider the reaction function such that ȳ(x) = y

and the strategies so that σh(ȳ) = x and σg(ȳ, σh(ȳ) = y. As (x, y) ∈ Sκ, σh(ȳ) = x and

σg(ȳ, σh(ȳ) = y form a competitive outcome and y is optimal after σh(ȳ).

Let us consider η̄ ∈ Y (X) such that CE(η̄) is non-empty. For any x′ ∈ Sxκ , w̄(x′, η̄(x′)).

By definition, w̄(x′, η̄(x′)) ≤ maxy′,(x′,y′)∈Sκ w̄(x′, y′). As σh(η̄) can be chosen in Sxκ and then

σg(η̄, x′) can be selected such that (x′, σg(η̄, x′)) ∈ Sκ, with

r̄(η̄, σh(η̄), σg(η̄, σh(η̄))) ≤ min
x′∈Sxκ

max
y′,(x′,y′)∈Sκ

w̄(x′, y′).

Using condition (ii), the right-hand term can be bounded above by w̄(x, y), which is the payoff

associated with r̄(ȳ, x, y), thus showing that there exists a strategy profile such that it is optimal

to play ȳ. As a result, (x, y) is an equilibrium outcome.

From Lemma D.1, v is a compact as Sκ is a compact and condition (ii) involves an inequality

that is not strict. Furthermore, (xκ, yκ) ∈ Θ(κ): indeed, it belongs to Sκ and leads to the highest

payoff in Sκ so that (ii) is trivially satisfied.

The worst equilibrium outcome. To show that the worst equilibrium outcome is an

increasing function of κ. Let us consider the worst equilibrium outcome vworst(κ) for a given κ.

The corresponding strategies are y(.), σg and σh. For a larger κ, let us note that these strategies

still satisfy condition (i) of the definition of an equilibrium but, given the larger commitment

ability, the government may sustain something at least better. In particular, this means that

something worse that vworst(κ) is not an equilibrium outcome.

Point (ii). The following lemma shows under which conditions the best equilibrium outcome

is implementable.

Lemma D.2. The best equilibrium outcome (xκ, yκ) is implementable if and only if there exists

a reaction function ȳ such that,

(i) ȳ(xκ) = yκ,

(ii) ∀x′ 6= xκ, (x′, ȳ(x′)) /∈ C,

(iii) ∀(x′, y′) ∈ C, (x′, y′) 6= (xκ, yκ), w(x′, y′)− κ < w(x′, ȳ(x′)).

Proof. First, suppose that there exists a reaction function ȳ such that ȳ(xκ) = yκ and

∀x′ 6= xκ, (x′, ȳ(x′)) /∈ C; (51)

∀(x′, y′) ∈ C, (x′, y′) 6= (xκ, yκ), w(x′, y′)− κ ≤ w(x′, ȳ(x′)). (52)
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First, notice that committing to such a reaction function is part of an equilibrium that leads to

an equilibrium outcome (xκ, yκ). Furthermore, there does not exist any alternative equilibrium

outcome. Indeed, suppose that such an equilibrium outcome exists (x′, y′) 6= (xκ, yκ). This

means that there exists a reaction function η̄ such that η̄(x) = y and a strategy profile σh

and σg such that σh(η̄) = x and σg(η̄, σh(η̄)) = y and η̄ is played in equilibrium. However,

this strategy profile should be also such that σh(ȳ) = xκ and σg(ȳ, σh(ȳ)) = yκ. Indeed, from

Condition (52), the government is better off to stick to ȳ when having committed to it and

(xκ, yκ) is the only continuation of an equilibrium that can form after ȳ. Finally, as (xκ, yκ)

leads to the highest payoff, the government strictly prefers to play ȳ instead of η̄.

Let now prove the reciprocal. Suppose that (xκ, yκ) is implementable. Let us show that

there exists a reaction function satisfying the three conditions of Lemma D.2.

(xκ, yκ) is an equilibrium outcome, so there exists ȳ such that (ȳ, σh, σg) is an equilibrium.

First, condition (i) is satisfied. Either ȳ(xκ) = yκ or, if not, we can consider another ȳ′ that

coincides with ȳ except for x = xκ, where ȳ′(xκ) = yκ and this alternative reaction function

yields a strictly higher payoff as the cost κ is not incurred in equilibrium.

Second, suppose that conditions (ii) and (iii) are not satisfied. Let us show there exists a

competitive outcome (x, y) that the government cannot rule out with any reaction function.

Indeed, if the reciprocal of Lemma D.2 is not true, for all reaction functions η̄, either there

exists x 6= xκ such that (x, η̄(x)) ∈ C or there exists y such that (x, y) is such that w(x, y)−κ >
w(x, η̄(x)), where (x, y) ∈ C.

The latter case is possible if and only if the ex post optimal action y∗(x) satisfies w(x, y∗(x))−
κ > w(x, η̄(x)). Otherwise, the government can select the reaction function to be y∗(x) to rule

out x. As a result, we can consider the strategy for the private sector to play σh(η̄) = x(η̄) 6= xκ

and for the government to play σg(η̄, .) = y∗(.). This is so that the continuation of an equilibrium

after the commitment to a reaction function intended to lead to (xκ, yκ) is (x(η̄), y(η̄)) with

y(η̄) = η̄(x((̄η)) if (x(η̄), η̄(x((̄η))) ∈ C or y(η̄) = y∗(x((̄η)) otherwise.

Finally, let us note that, anticipating a private sector strategy that would lead to an inferior

outcome than (xκ, yκ), the government may simply commit to another reaction function but

that cannot lead for sure to (xκ, yκ), so that another equilibrium outcome exists, contradicting

implementation.

First, a simple application of Lemma D.2 shows that if the best equilibrium outcome is

implementable for some κ > 0, then it is also implementable for any κ ≥ κ.

Second, Lemma D.2 shows that when κ > ρ the best equilibrium outcome is implementable.

Construct ȳ ∈ Y (X) that satisfies the three conditions. Define ȳ such that ȳ(xκ) = yκ. Item

(i) is satisfied. Lemma D.2 and the definition of ρ mean that, for any x ∈ X, we can find

ȳ(x) ∈ Y(x) such that w(x, y∗(x)) − ρ ≤ w(x, ȳ(x)). Hence, (x, ȳ(x)) /∈ C which leads to

Item (ii). Since y∗(x) is the best response to x, for any couple y ∈ D(x) such that (x, y) ∈ C,
w(x, y)−ρ ≤ w(x, ȳ(x)). Then κ > ρ implies Item (iii). Therefore, the best equilibrium outcome

is implementable.
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Reciprocally, suppose that the best equilibrium outcome is implementable. Thus for any

x 6= xκ ∈ X, we can build a ȳ(x) ∈ Y(x) and w(x, y)− κ < w(x, ȳ(x)) for any (x, y) ∈ C. Thus,

it is also true for y = y∗(x) and hence, w(x, y∗(x))− κ < w(x, ȳ(x)). This proves that κ ≥ ρ.

D.2 Proof of Proposition 3.

The first point of Proposition 3 directly results from the definition of ρ. Take x 6= xκ

that is not consistent with a Nash outcome, that means, such that y∗(x) /∈ C. therefore the

cost of deterring the private sector from playing this action x is zero as y∗(x) ∈ Y(x). So if

the government can credibly deter the private agents from playing actions x 6= xκ that are

consistent with a Nash outcome, the government implements (xκ, yκ). This condition means

that for any x 6= xκ there exists a policy action y in Y(x) such that:

w(x, y) > w(x, y∗(x))− κ. (53)

Let us now prove the second point of Proposition 3. In this proof, we show that the conditions of

the proposition ensures the existence of a reaction function satisfying the conditions of Lemma

D.2, which is sufficient to guarantee implementation.

For any x 6= xκ, such that (x, y∗(x)) /∈ C, the reaction function will be simply the best

response y∗(x) as explained in the first point of the Proposition. Let now consider the other

cases: all the actions x 6= xκ such that (x, y∗(x)) ∈ C. We assume that all the actions of these

Nash outcomes are interior actions.

Since we assume that there exists an open interval around the best response y∗(x) in D(x),

we can perturb the best response in D(x) by a small amount ε(x) ≥ 0 such that:

∃ξ ∈ X,u(ξ, x, y∗(x) + ε(x)) > u(x, x, y∗(x) + ε(x)), (54)

and |w(x̃, y∗(x) + ε(x))− w(x, y∗(x))| ≤ κ/2. (55)

In interior competitive outcomes, u1(x, x, y) = 0. That u13(x, x, y) 6= 0 and x in the interior of

X means that there exists a neighborhood for private actions ξ around x such that u1(ξ, x, y)

is either strictly positive or negative. This explains why we can pick a function ε satisfying the

first inequality. The second inequality is possible simultaneously by continuity of w.

Now construct the reaction function ȳ ∈ Y (X) as follows:

ȳ(x) = yκ, if x = xκ

ȳ(x) = y∗(x) + ε(x), otherwise,

where ε(x) = 0 when (x, y∗(x)) /∈ C or equivalently y∗(x) ∈ Y(x).

Equation (54) means that for any x′ 6= xκ, (x′, ȳ(x′)) /∈ C; Equation (55) ensures that the

third item of Lemma D.2 is verified. Therefore, ȳ satisfies the three conditions of Lemma D.2.

The best equilibrium outcome is thus implementable.
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D.3 Proof of Proposition 4.

Without loss of generality, let define the distribution of the noise as follows. For any level

of capital k, ε is uniformely distributed over [min(−k,−ε̄),max(ω − k, ε̄)].
Take a noise limit ε̄ as given.

Notice first that if there is implementation for a commitment ability κ, then it is also true

for higher levels.

Second, the Euler equation is not satisfied if:

1

4

1

1− k
6= (1− Eεδ(k + ε)). (56)

For capital levels strictly above the low-capital Nash equilibrium outcome, the government

can rely on the reaction function ȳ = y ∗ (k+ ε). For levels of noise sufficiently small, the Euler

equation will be verified only for x = xκ for ε̄→ 0 as in the perfect information case.

Then, to prevent other equilibria to form the government should rely on a reaction function

that satisfies (56) for any level of capital k. But as the right-hand-side member is continuous in k

it requires to make sure that the right-hand-side member is always strictly below or strictly above

the left-hand-side member. The expected tax Eεδ(k+ ε) cannot be above the one that satisifies

the Euler equation because for k tends to 0 the tax rate that satisifes the savers’ optimality

condition is δ = 1. Therefore, the only possible tax policy that supports implementation is one

with a capital income tax below the one that satisfies the Euler equation. But this tax rate

is far away from the ex-post optimal tax which is above (for instance for low enough level of

capital κ → 0, y∗ = 1). Therefore, implementation requires a sufficiently large commitment

ability.

D.4 Proof of Proposition 6.

In this proof, we closely follow Ljungqvist and Sargent (2018)’s proof that we extend to our

setting.

Lemma D.3. When Vm =
(
inf(x,y)∈C w(x, y)

)
/(1− β) > −∞, the set of payoffs V is bounded.

Proof. The worst per-period payoff for the government is w(xm, ym) − κ and so, the worst

payoff for the government is (w(xm, ym)− κ)/(1− δ) > −∞ as δ ∈ (0, 1). As a result the set of

equilibrium payoffs V is bounded below. Furthermore it is bounded above by the definition of

the Ramsey allocation. So that V is bounded.

Lemma D.4. Consider a strategy profile σ. We denote by ȳ = σ̄g0, and, for any η̄ ∈ Y (X),

x(η̄) = σh0 (η̄) and y(η̄) = σg0(η̄, x(η̄)). σ is a subgame perfect equilibrium if and only if:

(i) For any (η̄, γ, ε) ∈ Y (X)×X ×D(γ), σ|η̄,γ,ε is a subgame perfect equilibrium.

(ii) For any η̄ ∈ Y (X), if they exist, x(η̄) and y(η̄) satisfy:

• (x(η̄), y(η̄)) is a competitive outcome,
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• ∀η ∈ D(x(η̄)), r(η̄, x(η̄), y(η̄)) + βVg(σ|η̄,x(η̄),y(η̄)) ≥ r(η̄, x(η̄), η) + βVg(σ|(η̄),x(η̄),η).

(iii) ∀η̄ ∈ Y (X) such that x(η̄) and y(η̄) exist:

r(ȳ, x(ȳ), y(ȳ)) + βVg(σ|ȳ,x(ȳ),y(ȳ)) ≥ r(η̄, x(η̄), y(η̄)) + βVg(σ|η̄,x(η̄),y(η̄)).

Proof. Suppose that σ is an subgame perfect equilibrium. From the definition of a SPE, we

obtain conditions (ii) and (iii) from the definition at date 0. Condition (i) results from the fact

that σ is a subgame perfect equilibrium if and only if it is subgame perfect equilibrium after

any history.

Suppose that conditions (i), (ii) and (iii) are satisfied. Condition (i) implies that the defi-

nition of a subgame perfect equilibrium is satisfied for any date t ≥ 1. Conditions (ii) and (iii)

imply that the definition of a subgame perfect equilibrium is satisfied at date 0.

Lemma D.5. For a given competitive outcome (x, y) ∈ C and a reaction function ȳ ∈ Y (X),

there exists a subgame perfect equilibrium σ such that ȳ = σ̄g0, x = σh0 (ȳ) and y = σg0(ȳ, x), if

and only if there exist v(., .) : Y (X)× Y → V such that:

∀η ∈ D(x), r(ȳ, x, y) + βv(ȳ, y) ≥ r(ȳ, x, η) + βv(ȳ, η),

∀η̄ ∈ Y (X), if there exists (x(η̄), y(η̄)) ∈ C such that

∀η ∈ D(x(η̄)), r(η̄, x(η̄), y(η̄)) + βv(η̄, y(η̄)) ≥ r(η̄, x(η̄), η) + βv(η̄, η),

then:

r(ȳ, x, y) + βv(ȳ, y) ≥ r(η̄, x(η̄), y(η̄)) + βv(η̄, y(η̄)).

Proof. Let us consider a competitive outcome (x, y) and a reaction function ȳ. Suppose that

there exists a subgame perfect equilibrium σ such that x = σh0 (ȳ) and y = σg0(ȳ, x). From

Lemma D.4, for any (η̄, γ, ε) ∈ Y (X)×X ×D(γ), σ|η̄,γ,ε is a subgame perfect equilibrium. Let

us denote by v(η̄, ε) = Vg
(
σ|η̄,x(η̄),ε

)
. Using this, we obtain the conditions of Lemma D.5 from

conditions (ii) and (iii) in Lemma D.4.

Conversely, let us consider a reaction function ȳ ∈ Y (X) and a competitive equilibrium

(x, y) ∈ C satisfying the conditions of Lemma D.5. As v(., .) takes value in V, there exists a

continuation strategy starting at date 2 that is an equilibrium. The conditions of Lemma D.5

also ensure that the strategy is an equilibrium at date 1 as they allow to satisfy conditions (ii)

and (iii) in Lemma D.4.

Let us introduce a bunch of useful definitions:

Definition D.1. Let W ⊆ R. (ȳ, x, y, w(., .)) is said to be admissible with respect to W if ȳ ∈
Y (X), (x, y) ∈ C and w(., .) : Y (X)×X →W such that:

61



(i) ∀η ∈ D(x), r(ȳ, x, y) + βw(ȳ, y) ≥ r(ȳ, x, η) + βw(ȳ, η).

(ii) For any η̄ in the subset of Y (X) for which at least one competitive outcome (x′, y′) ∈ C
satisfies ∀η ∈ D(x′), r(η̄, x′, y′) + βw(η̄, y′) ≥ r(η̄, x′, η) + βw(η̄, η), there exists one such

competitive outcome such that:

r(ȳ, x, y) + βw(ȳ, y) ≥ r(η̄, x′, y′) + βw(η̄, y′).

Let B(W ) be the set of possible values w = r(ȳ, x, y)+βw(ȳ, y) associated with an admissible

(ȳ, x, y, w(., .)).

W is said to be self-generating when W ⊆ B(W ).

Lemma D.6. The following properties are true:

(i) Monotonicity of B: if W ⊆W ′ ⊆ R, then B(W ) ⊆ B(W ′).

(ii) Self-generation: if W ⊂ R is bounded and self-generating, then B(W ) ⊆ V .

Proof. Monotonicity. It can be directly obtained by using w1(., .) ∈ Y (X) × Y → W that

supports w ∈ B(W ) to support w ∈ B(W ′).

Self-generation. Suppose that W ⊆ B(W ). Let’s choose w ∈ B(W ) and let us show that it

is in V .

As w ∈ B(W ), there exists (ȳ, x, y, w1(., .)) such that (x, y) ∈ C and w1(., .) ∈ Y (X)×Y →W

and

∀η ∈ D(x), w = r(ȳ, x, y) + βw1(ȳ, y) ≥ r(x, η) + βw1(ȳ, η),

and, ∀η̄ ∈ Y (X) such that ∃(x(η̄), y(η̄)) ∈ C satisfying:

∀η ∈ D(x(η̄)), w = r(η̄, x(η̄), y(η̄)) + βw1(η̄, y(η̄)) ≥ r(x(η̄), η) + βw1((η̄), η),

we have:

w = r(ȳ, x, y) + βw(ȳ, y) ≥ r(η̄, x(η̄), y(η̄)) + ηw(η̄, y(η̄)).

Let set σ1 = (ȳ, x, y) and w1 = w(ȳ, y).

As w1 ∈ W ⊆ B(W ), there exist outcomes (˜̄y, x̃, ỹ) such that (x̃, ỹ) ∈ C and a function

w̃1(., .) ∈ Y (X)× Y →W that satisfy:

∀η ∈ D(x̃), w1 = r(˜̄y, x̃, ỹ) + βw̃1(˜̄y, ỹ) ≥ r(˜̄y, x̃, η) + βw̃1(˜̄y, η),

and, ∀η̄ ∈ Y (X) such that there exists (x(η̄), y(η̄)) ∈ C and

∀η ∈ D(x(η̄)), w1 = r(η̄, x(η̄), y(η̄)) + βw̃1(η̄, y(η̄)) ≥ r(η̄, x(η̄), η) + βw̃1(η̄, η),

we have:

w1 = r(˜̄y, x̃, ỹ) + βw̃1(ȳ, ỹ)) ≥ r(η̄, x(η̄), y(η̄)) + βw(η̄, y(η̄)).
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Set the first-period outcome in period 2 equal to (˜̄y, x̃, ỹ), that is (σ|(ȳ,x,y))1 = (˜̄y, x̃, ỹ).

This way, we can construct a sequence of continuation values with first-period outcomes.

As noted by Ljungqvist and Sargent (2018), the strategy profile that we have built is optimal

in the sense that, given continuation values, one-period deviations are not optimal. As a result,

Vg(σ) = w ∈ V .

Lemma D.7. Let W be a compact. B(W ) is a compact set.

Proof. Let us first partition B(W ) as follows. Let I(W ) ⊆ B(W ) such that any w ∈ B(W )

satisfy:

(i) there exists ȳ, x,y and w(., .) such that (ȳ, x, y, w(., .)) is admissible with respect to W

and ȳ(x) = y,

(ii) w = r(ȳ, x, y) + βw(ȳ, y).

By construction, we have:

B(W ) = I(W ) ∪ {B(W )I(W ).

Payoffs are continuous on I(W ) and {B(W )I(W ) respectively. As a result, I(W ) and {B(W )I(W )

are compact sets. As it is the finite union of compact sets, B(W ) is a compact set.

Let us now conclude. Let us assume that w(xm, ym) > −∞. Lemma D.3 implies that V is

bounded. From Lemma D.4, we have that V ⊆ B(V ) so that V is self-generating and bounded.

Using Lemma D.6, we obtain that B(V ) ⊆ V and B(V ) = V .

Finally, let us prove the following Lemma using the proof of Theorem 4 in Abreu et al.

(1990):

Lemma D.8. V is a compact.

Proof. We have that V is bounded and self generating (V ⊆ B(V )). Let us denote by cl(V ) the

closure of V . Given that V is bounded, cl(V ) is a compact and V ⊆ cl(V ).

By monotonicity, V = B(V ) ⊆ B(cl(V )). As B(.) maps compact sets into compact sets

(Lemma D.7), B(cl(V )) is compact. As cl(V ) is the smallest closed set (and thus compact) that

contains V , one can also infer that cl(V ) ⊆ B(cl(V )), which implies that cl(V ) is bounded and

self-generating. From Lemma D.6, we infer that cl(V ) ⊆ V , which implies that V = cl(V ) and

V is compact.

Another consequence of the proof of Lemma D.6 is also that we can build a subgame perfect

equilibrium for any v ∈ V , as V is bounded and self-generating. As a result, V is closed and

bounded and so, it is a compact.

Let us conclude the proof of the Proposition with the following lemma which gives the second

part of the results.

Lemma D.9. Vm ≤ Vworst ≤ Vbest ≤ VRamsey.
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Proof. First, we show that the lowest level of payoff Vworst is higher than w(xm,ym)
1−β . We denote

by σ the equilibrium that reaches this lowest payoff.

Consider a reaction function η̄ that consists for the government to always pick an action such

that for any x ∈ X, (x, η̄(x)) ∈ C. Since σ is an equilibrium, item (iii) of the SPE definition

applied for this particular reaction function η̄ and leads to:

Vworst ≥ V g
0 (σ|(η̄,x0(η̄),y0(η̄))).

In addition, item (ii) of the SPE definition for the policy action η = η̄(x0(η̄)) yields the following

inequality:

V g
0 (σ|(η̄,x0(η̄),y0(η̄))) ≥ w(x0(η̄), η̄(x0(η̄))) + βV g

1 (σ|(η̄,x0(η̄),η̄(x0(η̄)))).

The first right-hand-side member is greater than w(xm, ym) because (x0(η̄), η̄(x0(η̄))) ∈ C by

item (i) of the SPE definition and the second right-hand-side member is greater than Vworst

because this is the lowest equilibrium payoff. Therefore,

Vworst ≥ w(xm, ym) + βVworst and hence Vworst ≥
w(xm, ym)

1− β
.

Second, Vbest ≤ w(xR,yR)
1−β because at any date the equilibrium outcome is a competitive

equilibrium and hence leads to a per-period payoff lower than the Ramsey allocation’s one.

D.5 Proof of Proposition 7

The Ramsey allocation is an equilibrium outcome when κ ≥ κ̄. The following lemma

provides conditions under which the Ramsey allocation is an equilibrium outcome:

Lemma D.10. The Ramsey allocation is an equilibrium outcome if and only if Vworst satisfies:

β

(
w(xR, yR)

1− β
− Vworst

)
+ κ ≥ max

η
w(xR, η)− w(xR, yR). (57)

Proof. Suppose the Ramsey allocation is an equilibrium outcome and denote by σR = (σ̄g, σh, σg)

the equilibrium. At date 0, item (ii) of SPE definition for η̄ = σ̄g and for any η ∈ D(xR) 6=
σ̄g0(xR) = yR leads to:

w(xR, yR) +
β

1− β
w(xR, yR) ≥ r(σ̄g0 , x

R, η) + V g
1 (σ|(σ̄g0 ,xR,η)),

where r(σ̄g0 , x
R, η) = w(xR, η)−κ; therefore, by definition of the lowest equilibrium payoff Vworst:

w(xR, yR) +
β

1− β
w(xR, yR) ≥ max

η∈D(xR)∪yR
w(xR, η)− κ+ βVworst.

Therefore,

β

(
w(xR, yR)

1− β
− Vworst

)
+ κ ≥ max

η∈D(xR)∪yR
w(xR, η)− w(xR, yR).
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Notice that this inequality is obviously also valid for η = xR thus the exclusion of η = xR is

unnecessary.

Prove now the reciprocal implication. Take the carrot-and-stick strategy profile defined as

–as long as in the past there is no deviation– at any date t ≥ 0:27

σ̄gt (xR) = yR and σ̄gt (x) = arg max
y∈D(x)|(x,y)∈C

w(x, y) otherwise,

σht (σ̄gt ) = xR and σht (η̄) = xworst0 otherwise,

σg(σ̄gt , x) = σ̄gt (x) and σg(η̄, xworst0 ) = yworst otherwise.

After a deviation, the strategy simply replicates the worst equilibrium of the repeated game.

We do not define it entirely but we know that there exists such a continuation strategy since

the worst equilibrium is an equilibrium of the repeated game.

It suffices then to check that this strategy is an equilibrium. First, if η̄ 6= σ̄gt , then the result-

ing allocation is (xworst0 , yworst0 ) which is a competitive outcome. If η̄ = σ̄gt , then the resulting

allocation is (xR, yR) which is also a competitive outcome. Item (i) of the SPE definition is

verified.

Second, if η̄ 6= σ̄gt , item (iii) is verified since V R ≥ Vworst and item (ii) is verified since the

worst outcome (xworst0 , yworst0 ) and its continuation is an equilibrium outcome.

Third, it remains to show that when η̄ = σ̄gt item (ii) is satisfied for any η ∈ D(xR) which

is exactly inequality (57).

The Ramsey allocation is an equilibrium outcome when the (potential) gains from deviating

from the Ramsey allocation are dominated by the costs either due to reputation forces—captured

by β
(
w(xR,yR)

1−β − Vworst
)

—or due to commitment ability—captured by the reneging cost κ.

Inequality (57) highlights that reputation forces and commitment ability are substitutes: they do

not crowd out each other and both contribute to solve the time-consistency problem. Reputation

forces appear when discounting is positive (β > 0) and other equilibrium outcomes exist that

are worse than the Ramsey allocation. In this latter case, Vworst < w(xR, yR)/(1− β). Finally,

Proposition D.10 implies that, in the absence of reputation forces, the Ramsey allocation is

an equilibrium outcome if and only if κ ≥ κ̄, with κ̄ defined as in the static case (Section 2).

On the contrary, when β tends to 1, the time-consistency problem is solved even without any

commitment ability (κ = 0).

Necessity. We first prove that the Ramsey allocation is an equilibrium outcome and imple-

mentable only if κ ≥ κ̄ (see Lemma D.10).

Suppose κ < β
1−β (w(xR, yR)−w(xd, yd)), where (xd, yd) is the worst static Nash equilibrium.

Take the strategy defined at date 0 as follows:

27For simplicity we omit the whole history in the notations.
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σ̄g0 = yR

σh0 = xd

σg0(xd) = yd

The continuation strategy is a strategy sustaining the Ramsey equilibrium outcome if y0 = yd

and the reaction function was σ̄0; otherwise, the continuation strategy is to follow the date-0

strategy (as in a self-enforcing strategy).

This strategy is an equilibrium. A date 0, item (i) of SPE definition is satisfied since the

date-0 outcome is a competitive outcome ((xd, yd) ∈ C); Item (ii) is satisfied if: for any η̄ such

that η̄(xd) 6= yd and any η ∈ D(x):

V0 = w(xd, yd)− κ+ βV R ≥ w(xd, η̄(xd)) + βV0, (58)

where V0 is the date-0 value. Notice that playing yd is necessary better than any other deviation

from η̄(xd) that is the reason why this is the only inequality to check when η̄(xd) 6= yd. For

η̄(xd) = yd, the inequality to check is:

w(xd, yd) + βV0 ≤ w(xd, η)− κ+ βV R, (59)

which is clearly always satisfied by definition of yd.

Finally, check item (iii) of SPE definition requires to compare payoffs for different η̄; given

the private sector strategy this only requires to compare the case η̄(xd) = yd and η̄(xd) 6= yd:

V0 ≥ w(xd, yd) + βV0. (60)

Therefore V0 ≥ w(xd, yd)/(1−β), and all the above inequalities are satisfied if κ ≤ β
1−β (w(xR, yR)−

w(xd, yd)). We can build such a strategy for any Nash equilibrium but that is for the worst

Nash equilibrium (xd, yd) that the threshold is the highest for κ. Under such assumption, the

strategy is an equilibrium and hence (xR, yR) is an equilibrium outcome but not implementable.

Sufficiency. Assume that κ > max
(
κ̄, β

1−β (w(xR, yR)− w(xm, ym))
)

. In this case, Proposi-

tion D.10 shows that the Ramsey allocation is an equilibrium outcome. As in Proposition 3,

consider the reaction function ȳ such that ȳ(xR) = yR and ȳ(x) /∈ {y′|x = arg maxξ u(ξ, x, y′)}
defined in the proof of Proposition 3. It is easy to check that this reaction function is part of

an equilibrium where the private sector’s strategy is to play xR and the government strategy

σg is to stick to the reaction function if η̄ = ȳ and to play the best response given xR and η̄

otherwise.

Let us prove that there is no other equilibrium outcome. We proceed by contradiction.

Suppose that the strategy profile σ′ is an equilibrium such that, at some date t, the equi-

librium outcome (xt, yt) is such that xt 6= xR.

First, show that for η̄ = ȳ and for any history ht−1, (σht (ht−1, η̄), σg(ht−1, η̄, σ
h
t (η̄))) =

(xR, yR). Suppose that for an history, this equality is not verified, then it means that there
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exists a competitive equilibrium (x, y) 6= (xR, yR) and two equilibrium payoffs V1 and V2 in V

such that:

w(x, y)− κ+ βV1 ≥ w(x, ȳ(x)) + βV2.

Lemma D.9 shows that V1 ≤ w(xR,yR)
1−β and V2 ≥ w(xm,ym)

1−β therefore

β

1− β
(w(xR, yR)− w(xm, ym)) ≥ κ+ w(x, ȳ(x))− w(x, y), (61)

which is impossible given the construction of ȳ, and the assumption on κ —w(x, ȳ(x)) can be

as close as we want to w(x, y). This shows that the Ramsey allocation is always the outcome

resulting from ȳ.

So item (iii) of SPE definition cannot be verified for σ′ since there exists a reaction function

leading to the repeated Ramsey allocation. Thus σ′ is not an equilibrium and the Ramsey

allocation is the unique equilibrium outcome.

Existence of a threshold. Suppose that for some κ, the Ramsey allocation is the unique

equilibrium outcome. Then for any higher reneging cost κ′ ≥ κ the Ramsey allocation is also

the unique equilibrium outcome (this can be shown through a similar proof as above). With

the previous two results, it leads to the existence of

κI ∈
[

β

1− β
(w(xR, yR)− w(xd, yd)),

β

1− β
(w(xR, yR)− w(xm, ym))

]
such that the Ramsey allocation is the unique equilibrium outcome for any κ above κI and not

the unique equilibrium outcome below (assuming κ ≥ κ̄).

D.6 Proof of Proposition C.1

Take W = [w, w̄] and compute the boundaries W ′ = B(W ) = [w′, w̄′].

We obtain the maximum w̄′ = max r(ȳ, x, y)+βw(ȳ, y) over any admissible 4-uple (ȳ, x, y, w(., .))

with respect to W . To get the highest payoff w̄′, one should pick the highest admissible payoff

for w(ȳ, y) = w̄ while selecting the lowest one in case of deviation w(ȳ, η) = w for any η 6= ȳ(x).

Therefore the first condition (item (i) of Definition D.1)) on the highest payoff reads as:

u(x, y) + βw̄ ≥ u(x, y∗(x))− κ+ βw.

For the highest payoff, the ȳ should be chosen such that there is no deviation y = ȳ(x), and

hence r(ȳ, x, y) = u(x, y).

First, if κ < β(w̄ − w), then one can choose w(., .) such that there is no alternative η̄ 6= ȳ

satisfying (x′, y′) ∈ C and ∀η ∈ D(x′), u(x′, y′) + βw(η̄, y′) ≥ u(x′, η)− κ+ βw(η̄, η). But since

κ < β(w̄ − w), such couple does not exist because u(x′, y′) + βw̄ < u(x′, y∗(x′) + ε) − κ + βw

where ε is positive if y′ = y∗(x′). Finally, in this case, there is no additional constraint on the

best payoff w̄′.
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Otherwise, let us show that the additional constraint is:

u(x, y) + βw̄ ≥ u(xκ−β(w̄−w), yκ−β(w̄−w)) + βw.

where (xκ−β(w̄−w), yκ−β(w̄−w)) is the best constrained static outcome when the commitment

ability is max{0, κ− β(w̄ − w)}.
To show that, first notice that any competitive outcome (x′, y′) ∈ C that satisfies:

u(x, y) + βw ≥ u(x′, y∗(x′))− κ+ βw̄,

can be implemented (in the static sense) with a well-chosen reaction function η̄.

Finally, with the exact same reasoning, we find that the lowest payoff admissible with respect

to W is:

w′ = min
(x,y)∈C,w∈[w,w̄]

u(x, y) + βw,

subject to u(x, y) + βw ≥ u(x, y∗(x))− κ+ βw,

u(x, y) + βw ≥ u(xκ−β(w̄−w), yκ−β(w̄−w)) + βw.
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